
Pyripherals: A Python Package for Communicating
with Peripheral Electronic Devices
Abraham Stroschein 1, Ian Delgadillo Bonequi1, and Lucas J. Koerner 1

1 Department of Electrical and Computer Engineering, University of St. Thomas
DOI: 10.21105/joss.04762

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @untzag
• @askuric

Submitted: 15 July 2022
Published: 10 November 2022

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Statement of Need
We are developing a data acquisition system (DAQ) for real-time feedback that uses FPGA-
based control of and acquisition from various electronic chips, or peripherals. Because these
peripherals communicate over multiple protocols (SPI, I2C, LVDS) through an FPGA, we
designed pyripherals to organize and abstract registers, the communication protocol, and the
host computer interface to each communication controller. The software and firmware are
designed for Opal Kelly FPGA modules, yet the Python developments are generally useful to
organize communication with peripheral chips.

Data from a register is accessed with the address of the register and the bit indices of the
data field, but users will often refer to the data field by its name, which pyripherals retains
as a dictionary key. When passed the location of the data field, parameterized functions
automatically format the data or command as required by the communication interface used
by the peripheral. The assembled message is passed to the appropriate hardware controller
responsible for low-level communication with the peripheral. In this solution, the addressing, bit
indexing, and formatting are handled by pyripherals before the message is sent over the Opal
Kelly FrontPanel API to a hardware-level communication controller on an Opal Kelly FPGA
(“FrontPanel®,” 2022), which handles low-level communication with the desired peripheral.

This DAQ system and the pyripherals software are crucial components of a digital feedback
amplifier being developed for ion channel electrophysiology (Koerner et al., 2022) and more gen-
erally comprise an open-source system for microsecond latency real-time feedback experiments.
Similar DAQ systems (Leibrandt & Heidecker, 2015; Yu et al., 2018) create MHz bandwidth
servos for physics experiments but the host software is either not publicly available or not
generalizable. Many Python packages for lab automation and electrical instrument control have
been developed (Allan et al., 2019; Casagrande, 2020; Jermain & Rowlands, 2020) yet do not
support real-time control. In our system, the FPGA controller fills a need for microsecond level
latency by interfacing directly to analog-to-digital converters and digital-to-analog converters
while pyripherals organizes the configuration of these chips. The pyripherals software can
be expanded to control and read data from other electronic sensors, such as accelerometers,
and is currently in use in our lab with a time-of-flight depth sensor (AMS TMF8801) for
rapid readout of photon return time histograms. Similar to pyripherals, the Python package
registerMap (Smiley, 2019) creates a framework for register map organization in embedded
systems. However, it lacks the interconnection between register data and hardware commu-
nication controller offered by pyripherals. The Opal Kelly XEM7310 FPGA that we use for
communication controllers to demonstrate pyripherals is common in research environments
such that our pyripherals software may accelerate developments of FPGA to electronic chip
interfaces in other labs.

Stroschein et al. (2022). Pyripherals: A Python Package for Communicating with Peripheral Electronic Devices. Journal of Open Source Software,
7(79), 4762. https://doi.org/10.21105/joss.04762.

1

https://orcid.org/0000-0001-9412-2049
https://orcid.org/0000-0002-7236-7202
https://doi.org/10.21105/joss.04762
https://github.com/openjournals/joss-reviews/issues/4762
https://github.com/Ajstros/pyripherals
https://doi.org/10.5281/zenodo.7308636
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/untzag
https://github.com/askuric
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04762


Summary

Fig. 1: On the left, the pyripherals module abstracts registers to enable user code to easily
read and write to peripherals. pyripherals and the FPGA code share a file (ep_defines.v)
that defines the addresses of endpoints so that the transport of messages from the host
computer through the FPGA and to the correct peripherals is managed. On the right, is
an example hardware setup supported by Pyripherals. An FPGA module (Opal Kelly) with
a Python API to the USB interface has various types of communication controllers in the
FPGA logic and is wired to peripheral chips that sit on a custom circuit board. The chips
include analog-to-digital converters (ADCs), digital-to-analog converters (DACs), and a unique
identification chip (UID). The example user code reads the serial number of the UID chip
using get_serial_number. Pyripherals constructs the message using the address of the serial
number register from the Registers.xslx spreadsheet. The message is then routed to the
appropriate communication controller using the controller addresses defined in the ep_defines.v
file and by the user code which provides the controller/bus name at initialization of the UID
instance. Pyripherals formats messages for each type of communication protocol. In the
user code example, the UID chip is connected to the I2CDAQ bus and has messages routed
through the I2C0 communication controller such that the UID Python class inherits from a
parent I2CController class.

Registers
pyripherals reads an Excel spreadsheet that holds the name, address, lower bit index, upper bit
index, and bit width of each data field. Different peripherals can be separated into different
sheets within the register index. The table below shows an example sheet for a peripheral
named “MyADC”.

Name
Hex
Address

Default
Value

Bit
Width Bit Index (High)

Bit Index
(Low)

RESULT 0x00 0xf 12 11 0
CHAN 0x00 0x0 4 15 12
CONFIG 0x01 0xff 8 7 0
ID 0x01 0x0 8 15 8

Stroschein et al. (2022). Pyripherals: A Python Package for Communicating with Peripheral Electronic Devices. Journal of Open Source Software,
7(79), 4762. https://doi.org/10.21105/joss.04762.

2

https://pyripherals.readthedocs.io/en/latest/peripherals.html#pyripherals.peripherals.UID_24AA025UID.UID_24AA025UID.get_serial_number
https://doi.org/10.21105/joss.04762


Table 1: Each row shows a bit-field with a name and an address. This information is typically
extracted from the datasheet of the peripheral chip. Addressable registers in a peripheral
have multiple bits (often 16 or 32) that allow multiple data fields to be held in each register.
To account for this, the location within a register is indicated by the high and low bit index
columns. The default value of the register is stored to support verification of communication
by checks of read-only registers.

• Name = name of the data field chosen by the user. This is how the register will be
accessed in Python.

• Hex Address = address of the register on the chip as given by its datasheet. Must be
formatted as a hexadecimal number with “0x” prefix.

• Default Value = the default value of the register as given by the chip’s datasheet.
• Bit Width = the number of bits in the data field.
• Bit Index (High) = the bit index of the upper end of the data field in the register. Ex.

in a 32-bit register where the data field is located in the last 4 bits of the register, Bit
Index (High) would be 31.

• Bit Index (Low) = the bit index of the lower end of the data field in the register. Ex.
in a 32-bit register where the data field is located in the last 4 bits of the register, Bit
Index (Low) would be 28.

pyripherals then reads the spreadsheet, referred to as a register index in the documentation, and
returns a dictionary of name-Register pairs using the Register.get_chip_registers static
method. The example below retrieves the register index from the table above.

»> MYADC_regs = Register.get_chip_registers('MyADC')

Each Register object holds all values from the spreadsheet for the data field it represents. A
guide for creating a register index is located in the documentation. An example register is
shown below.

»> print(MYADC_regs['RESULT'])

0x0[0:11]

»> MYADC_regs['RESULT'].__dict__

{'address': 0, 'default': 15, 'bit_index_high': 11, 'bit_index_low': 0,

'bit_width': 12}

The Register abstraction of pyripherals allows user code to refer to data fields using only
their names. The spreadsheet organization of data fields allows for user-friendly editing and
sharing of data field information without the need to change user code. Specific applications
include communicating with microcontrollers or development boards like Arduino as well as
accessing data using SPI or I2C controllers.

pyripherals uses Registers to assemble messages for SPI (Srot, 2016) and I2C (I2CController,
2021) communication interfaces using parameterized commands in classes for SPI, hardware-
timed SPI, and I2C. Communication specific to an individual peripheral is available in its
subclass. A full list of peripherals with classes in pyripherals can be found in the documentation.

Endpoints
For our research, pyripherals is paired with hardware controllers instantiated on an Opal Kelly
FPGA. These controllers send communication signals to the chips connected to the FPGA. To
interact with these controllers, pyripherals uses the Opal Kelly FrontPanel API for bidirectional
communication over USB between a host computer and the FPGA using addressable endpoints.

pyripherals reads FrontPanel endpoint addresses and bit indices from a Verilog definition file.
This Verilog file requires a naming system described in the documentation and associates
peripherals with a specific hardware controller instantiation. A complete guide to creating
an endpoint definitions file is in the documentation. Each endpoint definition has an address
offset, a bit-field width, and an amount to increment the address if a second or subsequent

Stroschein et al. (2022). Pyripherals: A Python Package for Communicating with Peripheral Electronic Devices. Journal of Open Source Software,
7(79), 4762. https://doi.org/10.21105/joss.04762.

3

https://pyripherals.readthedocs.io/en/latest/register_index_guide.html
https://pyripherals.readthedocs.io/en/latest/peripherals.html#pyripherals.peripherals.SPIController.SPIController
https://pyripherals.readthedocs.io/en/latest/peripherals.html#pyripherals.peripherals.SPIFifoDriven.SPIFifoDriven
https://pyripherals.readthedocs.io/en/latest/peripherals.html#pyripherals.peripherals.SPIFifoDriven.SPIFifoDriven
https://pyripherals.readthedocs.io/en/latest/peripherals.html#pyripherals.peripherals.I2CController.I2CController
https://pyripherals.readthedocs.io/en/latest/peripherals.html
https://pyripherals.readthedocs.io/en/latest/endpoint_definitions_guide.html
https://pyripherals.readthedocs.io/en/latest/endpoint_definitions_guide.html
https://pyripherals.readthedocs.io/en/latest/endpoint_definitions_guide.html
https://doi.org/10.21105/joss.04762


instance is generated. The line below shows an example that defines an endpoint named
“WRITE_IN” that belongs to peripheral “MYADC” with an address of 0x04 (the 8’h prefix
below is Verilog syntax that indicates an 8-bit hexademical number) and a bit_width of 32
that adds 7 to the address every time it is advanced.

`define MYADC_WRITE_IN_GEN_ADDR 8'h04 // bit_width=32 addr_step=7

The naming convention for endpoints that contain addresses or bit indices is demonstrated
below with curly brackets {} indicating placeholders to be completed by the user. Endpoint
directions are from the perspective of the FPGA so WRITE_IN is data from the host computer
into the FPGA that is destined for the ADC chip. More information on the syntax and meaning
of these lines is available in the endpoint definitions guide.

Addresses:

`define {CHIPNAME}_{ENDPOINT_NAME}{_GEN_ADDR} {hexadecimal address}

// bit_width={bit_width} addr_step={addr_step}

Bit Indices:

`define {CHIPNAME}_{ENDPOINT_NAME}{_GEN_BIT} {decimal bit index}

// addr={address or endpoint name} bit_width={bit_width}

Note: the above comments must be placed on the same line as the ‘define. They are split
here for readability.

For multiple units of the same chip, each chip class has a create_chips method which
instantiates a specified number of chips, incrementing the endpoint addresses and bit indices
according to the GEN_ADDR, GEN_BIT, bit_width, and addr_step parameters above.

Once created, the user can read the endpoint definitions file with Endpoint.get_chip_endpoints

which returns a dictionary of name-Endpoint pairs. An example using the “MYADC_WRITE_IN”
endpoint from earlier is shown below.

»> MYADC_eps = Endpoint.get_chip_endpoints(chip_name='MYADC')

»> print(MYADC_eps['WRITE_IN'])

0x4[None:None]

»> MYADC_eps['WRITE_IN'].__dict__

{'address': 4, 'bit_index_low': None, 'bit_index_high': None, 'bit_width': 32,

'gen_bit': False, 'gen_address': False, 'addr_step': 7}

The Endpoint class in pyripherals extends the capabilities of the Opal Kelly FrontPanel API
by automatically linking the Python and Verilog endpoint data with a shared definitions file.
With pyripherals, when the user changes the value of an endpoint in the definitions file the
change is reflected in both the Python and Verilog code.

FPGA Data Acquisition Code
Our FPGA code for use with pyripherals is available at https://github.com/lucask07/covg_
fpga/. It is written for the Opal Kelly XEM7310 FPGA and supports I2C, SPI, and LVDS
communication with a DDR for data buffering. An example use of this code is an impedance
analyzer using a DAC80508 digital-to-analog converter (DAC80508, 2018) and an ADS8686
analog-to-digital converter (ADS8686S, 2020) communicating over SPI.

Links
Documentation is available at https://pyripherals.readthedocs.io/en/latest/index.html and
the GitHub is available at https://github.com/Ajstros/pyripherals. pyripherals is available for
install from pip at https://pypi.org/project/pyripherals/.

Stroschein et al. (2022). Pyripherals: A Python Package for Communicating with Peripheral Electronic Devices. Journal of Open Source Software,
7(79), 4762. https://doi.org/10.21105/joss.04762.

4

https://pyripherals.readthedocs.io/en/latest/endpoint_definitions_guide.html
https://github.com/lucask07/covg_fpga/
https://github.com/lucask07/covg_fpga/
https://pyripherals.readthedocs.io/en/latest/example.html
https://pyripherals.readthedocs.io/en/latest/example.html
https://pyripherals.readthedocs.io/en/latest/index.html
https://github.com/Ajstros/pyripherals
https://pypi.org/project/pyripherals/
https://doi.org/10.21105/joss.04762


Current Research
pyripherals was developed under an NIH-funded project to create a digital ion channel amplifier
at the University of St. Thomas where it is being used to communicate with and control an
FPGA-based data acquisition system for real-time feedback.

Acknowledgements
pyripherals was developed under the National Institutes of Health (NIH) R15 grant
R15NS116907 to PI L. J. Koerner.

References
ADS8686S. (2020). Texas Instruments. https://www.ti.com/product/ADS8686S

Allan, D., Caswell, T., Campbell, S., & Rakitin, M. (2019). Bluesky’s Ahead: A Multi-Facility
Collaboration for an a la Carte Software Project for Data Acquisition and Management.
Synchrotron Radiation News, 32(3), 19–22. https://doi.org/10.1080/08940886.2019.
1608121

Casagrande, S. (2020). InstrumentKit. https://github.com/instrumentkit/InstrumentKit

DAC80508. (2018). Texas Instruments. https://www.ti.com/product/DAC80508

FrontPanel®. (2022). In Opal Kelly. Opal Kelly. https://opalkelly.com/products/frontpanel/

I2CController. (2021). Opal Kelly. https://github.com/opalkelly-opensource/design-resources/
tree/main/HDLComponents/I2CController

Jermain, C., & Rowlands, G. (2020). PyMeasure. https://doi.org/10.5281/zenodo.3732545

Koerner, L. J., Bonequi, I. D., Stroschein, A., Uberecken, C., LoPresto, N., & Porter, J. (2022).
A digital feedback amplifier for oocyte ion channel measurements. Biophysical Journal,
121(3), 271a. https://doi.org/10.1016/j.bpj.2021.11.1391

Leibrandt, D. R., & Heidecker, J. (2015). An open source digital servo for AMO physics
experiments. arXiv:1508.06319 [Physics]. http://arxiv.org/abs/1508.06319

Smiley, R. (2019). registerMap. https://doi.org/10.5281/zenodo.777229

Srot, S. (2016). Overview :: SPI controller core :: OpenCores. https://opencores.org/projects/
spi

Yu, S. J., Fajeau, E., Liu, L. Q., Jones, D. J., & Madison, K. W. (2018). The performance
and limitations of FPGA-based digital servos for atomic, molecular, and optical physics
experiments. Review of Scientific Instruments, 89(2), 025107. https://doi.org/10.1063/1.
5001312

Stroschein et al. (2022). Pyripherals: A Python Package for Communicating with Peripheral Electronic Devices. Journal of Open Source Software,
7(79), 4762. https://doi.org/10.21105/joss.04762.

5

https://www.ti.com/product/ADS8686S
https://doi.org/10.1080/08940886.2019.1608121
https://doi.org/10.1080/08940886.2019.1608121
https://github.com/instrumentkit/InstrumentKit
https://www.ti.com/product/DAC80508
https://opalkelly.com/products/frontpanel/
https://github.com/opalkelly-opensource/design-resources/tree/main/HDLComponents/I2CController
https://github.com/opalkelly-opensource/design-resources/tree/main/HDLComponents/I2CController
https://doi.org/10.5281/zenodo.3732545
https://doi.org/10.1016/j.bpj.2021.11.1391
http://arxiv.org/abs/1508.06319
https://doi.org/10.5281/zenodo.777229
https://opencores.org/projects/spi
https://opencores.org/projects/spi
https://doi.org/10.1063/1.5001312
https://doi.org/10.1063/1.5001312
https://doi.org/10.21105/joss.04762

	Statement of Need
	Summary
	Registers
	Endpoints
	FPGA Data Acquisition Code
	Links

	Current Research
	Acknowledgements
	References

