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Summary
Spatial data, the locations of objects in a spatial region, is a common type of data recorded
in ecology, environmental sciences and epidemiology amongst many others. An appropriate
statistical approach for data which can be described as points, such as plants or individuals of
an animal population, are spatial point process models (Baddeley & Turner, 2000; Cressie,
1993). Spatial point processes can be used to understand the location of objects to inform
decision making and improve ecological, health and other socio-economic outcomes. For
example, the locations of individuals from a species’ population are typically not distributed
completely at random. Locations might be associated with favorable habitat conditions for
the niche of that species. We might expect these species locations and the underlying spatial
intensity are distributed according to relevant covariates, such as environmental conditions at
those locations.

Inhomogeneous Poisson Process Models allow for the spatial intensity of a point process to vary
across space, usually as a function of spatially referenced covariates. One challenge when fitting
an Inhomogeneous Poisson Process Model is that the integral used to described the intensity
surface in the log-likelihood (as described below) has no known closed analytic solution. For
Inhomogeneous Poisson Process Models, the Berman-Turner device (Berman & Turner, 1992)
is commonly used to approximate the model using quadrature within a weighted Poisson
generalized linear model. The type of quadrature scheme can have important ramifications for
overall model fitting and inference (Warton & Shepherd, 2010). Approximating the integral
accurately often comes at an increased computation cost, where a large number of quadrature
points are required to robustly estimate the integral (Renner et al., 2015).

Our ppmData package is setup to use a quasi-random quadrature approach as an alternative
to pseudo-random sampling (Phillips et al., 2009) and regular grid (Warton & Shepherd,
2010) quadrature approaches. Quasi-random sampling, a base-case of Balanced Acceptance
Sampling (Robertson, Brown, McDonald, & Jaksons, 2013), can be used to efficiently perform
numerical integration (Halton, 1960) and create spatially balanced survey designs. Quasi-
random sampling is an efficient form of spatial sampling as it approximately balances over all
spatially smooth covariates (Grafström & Tillé, 2013), even if they are not included or considered
in the quadrature generation. When used in the fitting of a Inhomogeneous Poisson Process
Models, quasi-random (spatially balanced) quadrature also reduces the influence of spatial
autocorrelation between quadrature points and is likely to improve numerical approximation of
the intensity (Foster et al., 2017; Liu & Vanhatalo, 2020).

Here we present the ppmData R package that is designed to setup a quadrature scheme using
Dirichlet tessellation for fitting spatial point process models. ppmData can setup a quadrature
scheme of point process (e.g the locations of species) or a marked point process (e.g the
locations of multiple species, where each location is associated with a specific species). In this
paper, we demonstrate how to set up quadrature for inhomogeneous Poisson Process Models
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and provide a simple example of how we can fit an inhomogeneous Poisson Process Model
using a ppmData object.

Inhomogeneous Poisson Process Models
An Inhomogeneous Poisson Process Model is a statistical model used to describe a random
point pattern for 𝑛 observed locations, (𝑦 = (𝑦(𝑠1), 𝑦(𝑠2),… , 𝑦(𝑠𝑛)), in a spatial window
𝒜 ⊂ 𝑅2. An Inhomogeneous Poisson Process Model assumes that the number of points in
𝒜, 𝑛, is a Poisson random variable with total intensity Λ defined as Λ = ∫

𝑠∈𝒜
𝜆(𝑠)𝑑𝑠. The

spatial function 𝜆(𝑠) is usually a non-constant function and defines the spatial surface that
the spatial locations 𝑦 are independently drawn from (Cressie, 1993). For convenience, we
use subscript notation for particular spatial locations, for example, 𝜆𝑖 = 𝜆(𝑠𝑖) is the intensity
surface of the point process at the 𝑖𝑡ℎ location with coordinates 𝑠𝑖. The intensity surface can
be defined as log{𝜆𝑖} = 𝑥⊤

𝑖 𝛽 where 𝑥𝑖 is a vector of spatially located covariates and 𝛽 is a
corresponding vector of coefficients.

The approximate log-likelihood ℓ(𝛽; {𝑥𝑖}) can be written as a weighted Poisson likelihood
(Berman & Turner, 1992)

ℓ(𝛽|𝑦) =
𝑛
∑
𝑖=1

log(𝜆𝑖) −∫
𝑠∈𝒜

𝜆(𝑠)𝑑𝑠 − log(𝑛!)

≈
𝑛
∑
𝑖=1

log(𝜆𝑖) −
𝑚
∑
𝑖=1

𝑤𝑖𝜆𝑖

=
𝑚
∑
𝑖=1

𝑤𝑖{𝑧𝑖 log(𝜆𝑖) − 𝜆𝑖} (1)

where 𝑧𝑖 is an indicator variable identifying if site 𝑖 is one of the 𝑛 observed points from
the random point pattern or one of the 𝑚 quadrature points. 𝑤𝑖 stores the quadrature
weights which sum to the total area of the region |𝒜|. In (1), we can see the integral in the
log-likelihood ℓ(𝛽|y) is being estimated using quadrature (Baddeley & Turner, 2000; Diggle,
Menezes, & Su, 2010). Warton & Shepherd (2010) demonstrated for presence-only species
distribution models, that using numerical quadrature with a point process framework makes
the models scale invariant and treats the quadrature purely as a tool for approximating the
integral.
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A) B) C)

Figure 1: Quadrature schemes generated using the ppmData package for the species Tasmaphena sinclairi
located within Tasmania, Australia. The red points represent the known locations of Tasmaphena sinclairi.
The black points represent the quadrature locations. A) Quasi-random quadrature where the integration
points are generated using a quasi-random areal sample. Weights for each integration point are calculated
as the dual of the subsequent Dirichlet tessellation of both the presence and integration points. B)
Pseudo-random quadrature generated using random points from within the window. C) Grid quadrature
where quadrature points are generated on a regular grid.

Statement of need
There are a number of ways to setup a quadrature scheme to approximate the integral
Λ = ∫

𝑠∈𝒜
𝜆(𝑠)𝑑𝑠. One common approach is to use a regular grid (Warton & Shepherd, 2010),

which creates a regular grid at a known resolution within a spatial window (𝒜 ⊂ 𝑅2). Despite
the simplicity of the grid approach, it is not without detraction though. In particular, it is
unlikely to handle edge effects well (when there is a consistent and potentially large pattern
near the boundaries of 𝒜). Then the grid will either be defined away from the edge, missing
important trends, or defined on the edge, over-representing this trend. Also, another potential
problem stems from the unlikely event that the spatial surface 𝜆(𝑠𝑖) has periodicity in its
pattern aligned to the direction of the grid, such as repeated locations of mountain ridges. In
that case, the grid-based quadrature will over- or under-estimate the integral depending on
whether the grid coincides with peaks or troughs of the surface.

Another common approach is to use a pseudo-random spatial samples and generate approximate
areal weights per quadrature point (Phillips et al., 2009; Renner et al., 2015). Typically, this is
done by generating pseudo-random points within the study window 𝒜 ⊂ 𝑅2 and assuming
that all quadrature points have equal weights, generally calculated as 𝑤𝑖 = 𝑚

|𝒜| (Renner et
al., 2015). This approach is unlikely to suffer either of the potential problems from the grid
approach, however it may be inefficient – requiring more points to achieve the same level of
accuracy (e.g. Robertson et al., 2013).

Here we use the quasi-random quadrature as a method to trade-off the robustness of pseudo-
random sampling and the efficiency of the grid. Quasi-random quadrature spreads the
quadrature points in space but simultaneously retains some of the important properties of
random sampling. Quasi-random quadrature schemes are available in other R packages, like
the excellent spatstat (Baddeley, Rubak, & Turner, 2015). The rQuasi function can be used
for generating a quasi-random spatial sample within a window. However, if the window is not
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a rectangle, the number of points will be reduced to include only the ones remaining inside
the window boundary, so specifying the number of active points is guess work. Our package
ppmData allows the exact number of quadrature points to be specified within a spatial window.

The package spatstat also allows a user to develop a quasi-random quadrature scheme, but
this appears to be quite slow when used with Dirichlet weights for larger numbers of dummy
(quadrature) points (> 10000). For example, a regular window with 100000 quadrature points
takes approximately 2.5 minutes to run in spatstat using quadscheme with method=Dirichlet

with quasi-random dummy points. Our package computes the same Dirichlet tessellation
in about 7.5 seconds (Comparisons were from a Linux operating system using a Intel i7 8
core processor, with 16 GB of RAM, see package readme for a quick comparison). Typically,
calculating a Dirichlet tessellation increases super-linearly and can become very slow for a
large numbers of points. Part of the challenge when developing ppmData was to make this
step efficient by a C++ implementation of a Delaunay triangulation radial sweep algorithm
(Sinclair, 2016). The Dirichlet tessellations are then calculated as the dual graph of the
Delaunay triangulation. Areal weights for the quadrature points are calculated as the area of
each Dirichlet tessellation polygon.

Generating a quasi-random quadrature scheme
In the ppmData package we have tried to make the generation of a quadrature scheme of a
single or marked point process as easy as possible. We provide a simple interface for generating
a Poisson point process data object and base all inputs and outputs using terra (Hijmans,
2021) and sf (Pebesma, 2018) packages. Users need to pass a set of coordinates from an
observed point pattern, a window to define the point pattern region and a set of covariates
observed across this region. The window is defined using a terra SpatRaster object, and it
is used to identify the point pattern region and where to generate the quadrature locations.
Covariates are included as a multiple layered terra SpatRaster object that share the same
extent and resolution as the window. The values of the covariates will be extracted at the
locations of the point pattern and quadrature scheme. Whilst not unique to this package, the
ppmData package can also generate grid and pseudo-random quadrature schemes as presented
in Fig. 1.
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Prolesophanta nelsonensis
Tasmaphena ruga
Tasmaphena sinclairi
Victaphanta lampra
Victaphanta milligani

Figure 2: Multiple species quadrature scheme. Here we can see the presences of five different snail
species across Tasmania. For the multiple species quadrature there is a common set of background
quadrature sites, but the object returns species specific weights.

Multiple species (marked) point process quadrature
One of the main reasons for creating the ppmData package was to develop quadrature schemes
for multiple species (marked) point process. The multiple species quadrature scheme can
be used in multiple species models available for use in the ecomix package (Woolley, Foster,
& Dunstan, 2022), or models like joint species distribution models (Ovaskainen & Soininen,
2011). Here is a quick example of how we would set up a quasi-random quadrature scheme
for multiple species (Fig. 2). The main difference is the column speciesID contains multiple
species, ppmData recognises this internally and subsequently sets up a marked point process
quadrature scheme. The quadrature scheme contains a common set of quadrature locations,
but the quadrature weights are calculated on a species-specific basis 𝑤𝑖𝑗, where 𝑖 is a site
index and 𝑗 is a species index.

Fitting a model using quadratures generated from ppmData

Here we demonstrate how to fit an Inhomogeneous Poisson Process Model using the glm

function and a ppmData object. This approach is very similar to the method presented in
Warton & Shepherd (2010), except we are using a quasi-random quadrature. We use glm

to fit an Inhomogeneous Poisson Process Model for simplicity, but if one wanted to fit an
Inhomogeneous Poisson Process Model using different statistical machinery, then one could
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– examples are: penalized regressions using glmnet (Friedman, Hastie, & Tibshirani, 2010)
to achieve a maxent analysis (Renner & Warton, 2013), generalized additive models (Wood,
2017) or statistical learning approaches (Hastie, Tibshirani, Friedman, & Friedman, 2009).

#load relevant libraries

library(ppmData)

#read the data into R

path <- system.file("extdata", package = "ppmData")

lst <- list.files(path=path,pattern='*.tif',full.names = TRUE)

preds <- rast(lst)

#Format the data (subset and scale)

presences <- subset(snails,SpeciesID %in% "Tasmaphena sinclairi")

preds <- scale(preds)

#Obtain quadrature points, variables and weights

ppmdata <- ppmData(npoints = 20000, presences = presences,

window = preds[[1]], covariates = preds)

We present a snippet of example code for fitting an Inhomogeneous Poisson Process Model
using glm from the R stats package (R Core Team, 2013). We just need to extract the
data.frame from the ppmData object and to specify a formula for the model. The only extra
step is making the formula response equal to presence/weights (which gives us 𝑧 in the
Berman & Turner (1992) approximation). The right side of the formula will represent the
covariates and their functional forms. In this example we specify independent 2𝑛𝑑 degree
polynomials for each covariate, except for the spatial coordinates X & Y which we include in
the model as interacting 2𝑛𝑑 degree polynomials. Once this is done, we define the weights in
the glm function call and we now can fit an IPPM using ppmData and glm.

ppp <- ppmdata$ppmData

form <- presence/weights ~ poly(X,Y, degree = 2) +

poly(max_temp_hottest_month, degree = 2) +

poly(annual_mean_precip, degree = 2) +

poly(annual_mean_temp, degree = 2) +

poly(distance_from_main_roads, degree = 2)

ft.ppm <- glm(formula = form, data = ppp,

weights = as.numeric(ppp$weights),

family = poisson())

Finally, we show how to predict the model using terra and a glm object. This will return the
expected intensity when all raster cell areas equal to one. To get the intensity of Tasmaphena
sinclairi per cell, we need to re-scale the intensity based on the area represented by each raster
cells. The re-scaled intensity returns the expected count of points (species presences) per
raster cell. See Fig. 3 for an example output.
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λi

(1.5e−20,7.4e−07]
(7.4e−07,2.2e−05]
(2.2e−05,6e−05]
(6e−05,0.0001]
(0.0001,0.00017]
(0.00017,0.00029]
(0.00029,0.00052]
(0.00052,0.001]
(0.001,0.022]

Figure 3: Predicted intensity per for ≈ 0.6 km2 sized raster cell for the snail species Tasmaphena sinclairi.
The points are occurrence records for Tasmaphena sinclairi in the region.
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