
cppTPSA/pyTPSA: a C++/Python package for
truncated power series algebra
He Zhang 1¶

1 Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA ¶ Corresponding
author

DOI: 10.21105/joss.04818

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @CFGrote
• @mbkumar

Submitted: 27 August 2021
Published: 29 February 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
The truncated power series algebra (TPSA), also referred to as differential algebra (DA),
is a well-established and widely used method in particle accelerator physics and astronomy.
The most straightforward usage of TPSA/DA is to calculate the Taylor expansion of a given
function at a specific point up to order 𝑛. In recent years, as the application of TPSA/TA
has been extended to other fields, a reusable implementation of TPSA/DA as a modern C++
library or other high level programming language like Python has become desirable. The
cppTPSA package implements TPSA/DA in C++11 and provides developers a convenient
library with which to build advanced TPSA/DA-based methods. A Python 3 library, pyTPSA,
has also been developed based on the C++ lib.

Background
In the following, we give a very brief introduction on TPSA/DA from a practical computational
perspective. Please refer to Berz (1999) and Chao (2002) for the complete theory with more
details.

The fundamental concept in DA is the DA vector. To make this concept easier to understand,
we can consider a DA vector as the Taylor expansion of a function at a specific point.

Considering a function 𝑓(x) and its Taylor expansion 𝑓T(x0) at the point x0 up to the order
𝑛, we can define an equivalence relation between the Taylor expansion and the DA vector as
follows

[𝑓]𝑛 = 𝑓T(x0) = ∑𝐶𝑛1,𝑛2,...,𝑛𝑣
⋅ 𝑑𝑛1

1 ⋅ ⋯ ⋅ 𝑑𝑛𝑣𝑣 ,

where x = (𝑥1, 𝑥2,… , 𝑥𝑣), and 𝑛 ≥ 𝑛1 + 𝑛2 + ⋯ + 𝑛𝑣. Here 𝑑𝑖 is a special number: it
represents a small variance in 𝑥𝑖. Generally one can define a DA vector by directly setting
values to respective terms, without defining the function 𝑓. The addition and multiplication of
two DA vectors can be defined straightforwardly. To add two DA vectors, we simply add the
coefficients of the like terms. To multiply two DA vectors, we multiply each term in the first
one with all the terms in the second one and combine like terms while ignoring all terms above
order 𝑛. So given two DA vectors [𝑎]𝑛 and [𝑏]𝑛 and a scalar c, we have the following formulae:

[𝑎]𝑛 + [𝑏]𝑛 ∶= [𝑎 + 𝑏]𝑛,
𝑐 ⋅ [𝑎]𝑛 ∶= [𝑐 ⋅ 𝑎]𝑛, (1)

[𝑎]𝑛 ⋅ [𝑏]𝑛 ∶= [𝑎 ⋅ 𝑏]𝑛,

Zhang. (2024). cppTPSA/pyTPSA: a C++/Python package for truncated power series algebra. Journal of Open Source Software, 9(94), 4818.
https://doi.org/10.21105/joss.04818.

1

https://orcid.org/0000-0001-7701-4118
https://doi.org/10.21105/joss.04818
https://github.com/openjournals/joss-reviews/issues/4818
https://github.com/zhanghe9704/tpsa
https://doi.org/10.5281/zenodo.10728770
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/CFGrote
https://github.com/mbkumar
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04818

According to the fixed point theorem (Berz, 1999), the inverse of a DA vector that is not
infinitely small can be calculated iteratively in a limited number of iterations.

The derivation operator 𝜕𝑣 with respect to the 𝑣th variable can be defined as

𝜕𝑣[𝑎]𝑛 = [𝜕
𝜕𝑥𝑣

𝑎]
𝑛−1

,

which can be carried out term by term on [𝑎]𝑛. The operator 𝜕𝑣 satisfies the chain rule:

𝜕𝑣([𝑎] ⋅ [𝑏]) = [𝑎] ⋅ (𝜕𝑣[𝑏]) + (𝜕𝑣[𝑎]) ⋅ [𝑏].

The inverse operator 𝜕−1
𝑣 can also be defined and carried out easily in a term-by-term manner.

Once the fundamental operators are defined, the DA vector can be used in calculations just as a
number. More sophisticated methods using DA have been developed, e.g. symplectic tracking
(Berz, 1991a), normal form analysis (Berz, 1991b), verified integration (Berz & Makino, 1998),
global optimization (Makino & Berz, 2005,), fast multipole method for pairwise interactions
between particles (Zhang & Berz, 2011).

Statement of need
TPSA/DA methods for particle beam dynamic analysis were developed in the 1980s. These
tools are available in several popular programs for particle accelerator design and simulations,
such as COSY Infinity 9 (Makino & Berz, 2006), MAD-X (Deniau et al., 2017; Grote &
Schmidt, 2003), and PTC (Forest et al., 2002). In recent years, the application of TPSA/DA
has been extended to other fields, motivating the development of TPSA/DA libraries in popular
programming languages. However, the existing programs are not convenient for developers
from other fields. For instance, MAD-X is specifically developed for accelerator design and
cannot be used as a general programming language. Although COSY Infinity can be used
as a general programming languages, it lacks some of the convenient programming features
found in modern languages, such as C++ or Python, along with abundant libraries and a
large supporting community. PTC does include a TPSA/DA library in Fortran 90 but it lacks
a user-friendly interface. TPSA/DA libraries in C++ are rare. DACE (Massari et al., 2018;
Massari & Wittig, 2021) is one alternative. The DACE repository on GitHub had been created
but no codes had been released when the author began developing cppTPSA(Zhang, 2021).
Now DACE is available to the public, providing fundamental DA operations and some advanced
algorithms based on DA. However, it does not support complex DA vectors, which are useful
in normal form analysis. To the author’s best knowledge, there is no other TPSA/DA library
in Python 3.

Features
This library consists of a C++ library that performs TPSA/DA calculations and a Python
wrapper. Users can compile the source code into a static or shared library or generate a
Python library for a Python 3 environment. The readme file in the repository provides detailed
instructions on how to compile both the C++ library and the Python library, respectively.

The C++ library is based on Lingyun Yang’s TPSA code (Yang, 2009), which is also incorporated
into MAD-X (Deniau et al., 2017). During development, we tried to make minimal changes
from the original code, but had to revise or rewrite some functions for better efficiency and/or
consistency. One big change is the memory management. In Yang’s code, the pointers to all
the DA vectors are stored in a vector. Whenever a new DA vector is required, the program
searches this vector for the first empty pointer and allocates the memory. Once a DA vector

Zhang. (2024). cppTPSA/pyTPSA: a C++/Python package for truncated power series algebra. Journal of Open Source Software, 9(94), 4818.
https://doi.org/10.21105/joss.04818.

2

https://doi.org/10.21105/joss.04818

is out of scope, the memory is freed. In contrast, our library initiates a memory pool for all
DA vectors (with the number defined by the user) at the very start, during the initialization
of the DA environment. The addresses for the slots, each for one DA vector, in the pool are
maintained in a linked list. Whenever we need to create a new DA vector, we take out a slot
from the beginning of the list. Whenever a DA vector goes out of the scope, its destructor will
set all value in the slot to zero and put it back at the end of the list. The memory pool is
managed simply by manipulating the two pointers: one pointing to the start and the other to
the end of the list. This method eliminates the repetitive searching and allocation/deallocation
operations, thereby achieving better efficiency.

Some new features have been added, as follows:

1. Add a DA vector data type and define the commonly used math operators for it, so that
users can use a DA vector as simple as a normal number in calculations.

2. Support the complex DA vector defined by the C++ complex template.
3. More math functions are supported. (A list of the overloaded math functions can be

found in the readme file of the repository.)
4. Add new functions that perform the composition of (complex) DA vectors, which can

carry out multiple compositions in a call.
5. A Python wrapper is provided.

The following C++ code shows an example of a simple TPSA/DA calculation. After initializing
an environment that can contain at most 400 three dimensional DA vectors up to the 4th
order, two DA vectors x1 and x2 and a complex DA vector y1 are defined, some trigonometric
functions are performed on them, and the results are output to the screen.

#include "da.h"

da_init(4, 3, 400);

DAVector x1, x2;

x1 = da[0] + 2*da[1] + 3*da[2];

x2 = sin(x1);

x1 = cos(x1);

auto y1 = x1 + x2*1i;

std::cout<<x1<<x2<<std::endl;

std::cout<<sin(y1)<<std::endl;

A Python example doing the same calculation is presented as follows.

import tpsa

tpsa.da_init(4, 3, 400)

da = tpsa.base()

x1 = da[0] + 2*da[1] + 3*da[2]

x2 = tpsa.sin(x1)

x1 = tpsa.cos(x1)

y1 = tpsa.complex(x1, x2)

print(x1)

print(x2)

print(tpsa.sin(y1))

More examples can be found in the repository.

Verification
This library has been verified with COSY Infinity 9.0. As an example, the outputs of calculating
sin (0.3+da[0]+2×da[1]) up to the fourth order by both programs are presented in Figure 1
and Figure 2 respectively. Figure 1 shows the result generated by COSY Infinity, while Figure 2
shows the result generated by cppTPSA. The two programs give exactly the same result. In
most cases, the two programs agree to the machine’s precision. However, one may observe

Zhang. (2024). cppTPSA/pyTPSA: a C++/Python package for truncated power series algebra. Journal of Open Source Software, 9(94), 4818.
https://doi.org/10.21105/joss.04818.

3

https://doi.org/10.21105/joss.04818

difference in the coefficients at orders of 10−15 or 10−16 for some special functions such
as arcsin. This is because different numerical recipes are used in calculation. For example,
a special function may be approximated by different series. This small deviation is usually
considered acceptable in practice. If higher precision is desired, one could/should consider
the Taylor Model (TM) datatype in COSY Infinity. The TM vector calculates a DA vector
together with its error band. However, it is outside the scope of this code. Please note the
sequence of the terms may be different when outputting a DA vector from cppTPSA and from
COSY Infinity.

Figure 1: COSY Infinity 9.0 output.

Figure 2: cppTPSA output.

Acknowledgements
The author would like to thank Dr. Lingyun Yang for providing his source code.

This material is based upon work supported by the U.S. Department of Energy, Office of
Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.

Zhang. (2024). cppTPSA/pyTPSA: a C++/Python package for truncated power series algebra. Journal of Open Source Software, 9(94), 4818.
https://doi.org/10.21105/joss.04818.

4

https://doi.org/10.21105/joss.04818

References
Berz, M. (1991a). Symplectic tracking in circular accelerators with high order maps. Nonlinear

Problems in Future Particle Accelerators, 288.

Berz, M. (1991b). High-order computation and normal form analysis of repetitive systems, in:
M. Month (Ed), physics of particle accelerators (Vol. 249, p. 456). American Institute of
Physics. https://doi.org/10.1063/1.41975

Berz, M. (1999). Modern map methods in particle beam physics. Academic Press. https:
//doi.org/10.1016/s1076-5670(08)x7018-1

Berz, M., & Makino, K. (1998). Verified integration of ODEs and flows using differential
algebraic methods on high-order Taylor models. Reliable Computing, 4, 361–369. https:
//doi.org/10.1023/A:1024467732637

Chao, A. W. (2002). Lecture notes on topics in accelerator physics. Stanford Linear Accelerator
Center, Menlo Park, CA (US). https://doi.org/10.2172/812598

Deniau, L., Skowronski, P., Roy, G., & others. (2017). MAD-X: Methodical accelerator design.
In GitHub repository. GitHub. https://doi.org/10.5281/zenodo.7900975

Forest, E., Schmidt, F., & McIntosh, E. (2002). Introduction to the polymorphic tracking
code. KEK Report, 3, 2002. https://inspirehep.net/literature/591979

Grote, H., & Schmidt, F. (2003). MAD-X-an upgrade from MAD8. Proceedings of the
2003 Particle Accelerator Conference, 5, 3497–3499. https://doi.org/10.1109/PAC.2003.
1289960

Makino, K., & Berz, M. (2005). Verified global optimization with Taylor model based range
bounders. Transactions on Computers, 11(4), 1611–1618. https://www.bmtdynamics.org/
pub/papers/GOM05/GOM05.pdf

Makino, K., & Berz, M. (2006). COSY INFINITY version 9. Nuclear Instruments and Methods,
558, 346–350. https://doi.org/10.1016/j.nima.2005.11.109

Massari, M., Di Lizia, P., Cavenago, F., & Wittig, A. (2018). Differential algebra software library
with automatic code generation for space embedded applications. In 2018 AIAA information
systems-AIAA infotech@ aerospace (p. 0398). https://doi.org/10.2514/6.2018-0398

Massari, M., & Wittig, A. (2021). DACE: The differential algebra computational toolbox. In
GitHub repository. GitHub. https://github.com/dacelib/dace

Yang, L. (2009). Array based truncated power series package. Proceedings of the 10th
Internaltional Computational Accelerator Physics Conference, 371–373. https://https:
//accelconf.web.cern.ch/ICAP2009/papers/thpsc059.pdf

Zhang, H. (2021). cppTPSA: A C++ TPSA lib. In GitHub repository. GitHub. https:
//github.com/zhanghe9704/tpsa

Zhang, H., & Berz, M. (2011). The fast multipole method in the differential algebra framework.
Nuclear Instruments and Methods A 645, 338–344. https://doi.org/10.1016/j.nima.2011.
01.053

Zhang. (2024). cppTPSA/pyTPSA: a C++/Python package for truncated power series algebra. Journal of Open Source Software, 9(94), 4818.
https://doi.org/10.21105/joss.04818.

5

https://doi.org/10.1063/1.41975
https://doi.org/10.1016/s1076-5670(08)x7018-1
https://doi.org/10.1016/s1076-5670(08)x7018-1
https://doi.org/10.1023/A:1024467732637
https://doi.org/10.1023/A:1024467732637
https://doi.org/10.2172/812598
https://doi.org/10.5281/zenodo.7900975
https://inspirehep.net/literature/591979
https://doi.org/10.1109/PAC.2003.1289960
https://doi.org/10.1109/PAC.2003.1289960
https://www.bmtdynamics.org/pub/papers/GOM05/GOM05.pdf
https://www.bmtdynamics.org/pub/papers/GOM05/GOM05.pdf
https://doi.org/10.1016/j.nima.2005.11.109
https://doi.org/10.2514/6.2018-0398
https://github.com/dacelib/dace
https://https://accelconf.web.cern.ch/ICAP2009/papers/thpsc059.pdf
https://https://accelconf.web.cern.ch/ICAP2009/papers/thpsc059.pdf
https://github.com/zhanghe9704/tpsa
https://github.com/zhanghe9704/tpsa
https://doi.org/10.1016/j.nima.2011.01.053
https://doi.org/10.1016/j.nima.2011.01.053
https://doi.org/10.21105/joss.04818

	Summary
	Background
	Statement of need
	Features
	Verification
	Acknowledgements
	References

