
GLUE Code: A framework handling communication
and interfaces between scales
Aleksandra Pachalieva 1,2, Robert S. Pavel 3¶, Javier E. Santos 1,2,
Abdourahmane Diaw 4, Nicholas Lubbers 3, Mohamed Mehana 2,
Jeffrey R. Haack 3, Hari S. Viswanathan 2, Daniel Livescu 3, Timothy
C. Germann 5, and Christoph Junghans 3

1 Center for Non-Linear Studies, Los Alamos National Laboratory, Los Alamos, 87545 NM, USA 2 Earth
and Environmental Sciences (EES) Division, Los Alamos National Laboratory, Los Alamos, 87545 NM,
USA 3 Computer, Computational and Statistical Sciences (CCS) Division, Los Alamos National
Laboratory, Los Alamos, 87545 NM, USA 4 Fusion Energy Division, Oak Ridge National Laboratory, 1
Bethel Valley Road, Oak Ridge, TN 37831, USA 5 Theoretical Division, Los Alamos National Laboratory,
Los Alamos, 87545 NM, USA ¶ Corresponding author

DOI: 10.21105/joss.04822

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @govarguz
• @keipertk

Submitted: 20 September 2022
Published: 23 December 2022

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Many scientific applications are inherently multiscale in nature. Such complex physical phenom-
ena often require simultaneous execution and coordination of simulations spanning multiple
time and length scales. This is possible by combining expensive small-scale simulations (such
as molecular dynamics simulations) with larger scale simulations (such continuum limit/hydro
solvers) to allow for considerably larger systems using task and data parallelism. However, the
granularity of the tasks can be very large and often leads to load imbalance. Traditionally, we
use approximations to streamline the computation of the more costly interactions and this
introduces trade-offs between simulation cost and accuracy. In recent years, the available
computational power and the advances in machine learning have made computing these
scale-bridging interactions and multiscale simulations more feasible.

One driving application has been plasma modeling in inertial confinement fusion (ICF), which
is fundamentally multiscale in nature. This requires deep understanding of how to extrapolate
microscopic information into macroscopically relevant scales. For example, in ICF one needs an
accurate understanding of the connection between experimental observables and the underlying
microphysics. The properties of the larger scales are often affected by the microscale behavior
incorporated usually into the equations of state and ionic and electronic transport coefficients
(Liboff, 1959; Rinderknecht et al., 2014; Rosenberg et al., 2015; Ross et al., 2017). Instead of
incorporating this information using reliable molecular dynamics (MD) simulations, one often
needs to use theoretical models, due to the inability of MD to reach engineering scales (Glosli
et al., 2007; Marinak et al., 1998). One approach to resolve this issue is by coupling two
MD simulations of different scales via force interpolation, e.g., the AdResS method (Krekeler
et al., 2018; Nagarajan et al., 2013). Another approach, which we will pursue in the scope
of this work, is by enabling scale bridging between MD simulations and meso/macro-scale
models through the development and support of application programming interfaces that these
different applications can interact through.

State of the art
Traditionally, multiscale simulations combine multiple simulation methods that need to be
simultaneously executed and coordinated. To achieve this, we use asynchronous task-based

Pachalieva et al. (2022). GLUE Code: A framework handling communication and interfaces between scales. Journal of Open Source Software,
7(80), 4822. https://doi.org/10.21105/joss.04822.

1

https://orcid.org/0000-0003-1246-0410
https://orcid.org/0000-0001-7913-9918
https://orcid.org/0000-0002-2404-3975
https://orcid.org/0000-0001-6743-3255
https://orcid.org/0000-0002-9001-9973
https://orcid.org/0000-0003-2472-2879
https://orcid.org/0000-0002-2044-0885
https://orcid.org/0000-0002-1178-9647
https://orcid.org/0000-0003-2367-1547
https://orcid.org/0000-0002-6813-238X
https://orcid.org/0000-0003-0925-1458
https://doi.org/10.21105/joss.04822
https://github.com/openjournals/joss-reviews/issues/4822
https://github.com/lanl/GLUE
https://doi.org/10.5281/zenodo.7469110
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/govarguz
https://github.com/keipertk
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04822


runtime systems that include load balancers. Such load balancers can schedule and migrate
tasks to maintain throughput; however, the issue of fault tolerance remains (Cappello, 2009).
To avoid this, checkpointing is often used (Koo & Toueg, 1987), but it could be prohibitively
expensive when its output frequency is high. Other works such as the mystic framework
(Michael McKerns & Aivazis, 2019) is more geared towards large-scale machine learning
techniques (McKerns et al., 2011). Such codes are not designed toward coupling multiscale
simulations but have been demonstrated to be highly effective at solving hard optimization
problems.

In this work, we propose the Generic Learning User Enablement (GLUE) Code to facilitate the
coupling between scales. The GLUE Code builds upon previous work on multiscale coupling
(Haack et al., 2021; Karra et al., 2022; Lubbers et al., 2020; R. Pavel et al., 2017; R. S.
Pavel et al., 2015). At its simplest, we determine what physical properties must be exchanged
between the various scales and derive application programming interfaces (APIs) from these.

To take advantage of modern supercomputing and exascale platforms and we couple our
framework directly with high-performance-computing-friendly job schedulers. This allows us
to use one framework to generate training data with a minimal footprint (task scheduler
can fire off all jobs) and perform “hero-runs” of multiscale simulations. At every point, we
perform a fine grain simulation or utilize an upscaled result from the active learning model.
The GLUE Code uses active learning to evaluate the level of uncertainty and executes fine grain
simulations when more training data is required.

Statement of need
The GLUE Code is a modular framework designed to couple different scientific applications to
support use cases, including multiscale methods and various forms of machine learning. The
workflow was initially designed around supporting active learning as an alternative to coupled
applications to support multiscale methods but has been written in a sufficiently modular way
that different machine learning methods can be utilized. Application programming interfaces
(API) are available for C, C++, Fortran, and Python with support for various storage formats.
The code also provides direct coupling with high performance computing job schedulers such
as SLURM (Yoo et al., 2003) and Flux (Ahn et al., 2018). An overview of the GLUE Code
implementation is shown in Fig. 1, where the meso/macro-scale solvers BGK, CFDNS, and
LBM are also defined.

Pachalieva et al. (2022). GLUE Code: A framework handling communication and interfaces between scales. Journal of Open Source Software,
7(80), 4822. https://doi.org/10.21105/joss.04822.

2

https://doi.org/10.21105/joss.04822


Figure 1

Figure 1: Sample of the GLUE Code implementation of our microscale-macroscale coupling.
On the macroscale simulation (left) sending a request, the GLUE Code (center) uses the active
learning algorithms (center purple) to determine if the model’s uncertainty quantification is
such that a new fine grain simulation (right) needs to be called. Then either the result of the
fine grain simulation or the model’s prediction is returned to the macroscale simulation. This
figure is adapted from Fig. 2 in Diaw et al. (2020).

The aim of the GLUE Code is to efficiently handle the communication and interfaces between
the computing platform, surrogate model, coarse-scale code, and fine-scale code (Diaw et al.,
2020). At its core, the GLUE Code determines what physical properties need to be exchanged
between the scales of interest and spawns APIs using this information. The GLUE Code ensures
that these physical properties are communicated between the various scientific codes needed
for the given multiscale problem. The GLUE Code uses active learning algorithms to evaluate
if the model has a high level of uncertainty, and thus, a fine grain simulation needs to be
executed. At the end of each cycle, the framework returns either the result of the fine grain
simulation or the model’s prediction of the macroscopic simulation.

Characteristics of the GLUE code:

• The GLUE Code has a modular lightweight structure, where each component can be
swapped out for a different implementation. This is possible due to the APIs structure
of the framework.

• The modularity of the GLUE code allows us to replace a scientific solver with a machine
learning solution. The scale bridging structures are explicitly defined, which allows us to
switch between a fine grain MD simulation and an ML solution. If a neural network is
capable of reproducing the same outputs as an MD simulation from the same inputs,
then they would be functionally identical.

• As shown in Fig. 1, the main components of the GLUE Code are a Coarse Grain Solver,
an active learning backend, a relational database, a job scheduler, and the coupling and
coordination logic.

Pachalieva et al. (2022). GLUE Code: A framework handling communication and interfaces between scales. Journal of Open Source Software,
7(80), 4822. https://doi.org/10.21105/joss.04822.

3

https://doi.org/10.21105/joss.04822


• The GLUE Code is written with a collection of commodity software as the backend to
most of these components. Currently, the relational database is supported via SQL(ite),
while the job scheduler has support for SLURM (Yoo et al., 2003), Lawrence Livermore
National Laboratory’s Flux scheduler (Ahn et al., 2018), and a rudimentary serialization
model for debugging. Active learning is provided through PyTorch (Paszke et al., 2019)
and Scikit-Learn (Pedregosa et al., 2011).

• This approach relies on SQL(ite) for the communication as it is a guaranteed atomic
read and write that simplifies a lot of our efforts at the cost of performance.

• For coarse grain simulations, we currently couple with the Multi-BGK (Los Alamos
National Laboratory, n.d.) as well as additional ICF codes. Preliminary studies have
been made of coupling with more general Lattice Boltzmann simulations for other fields
of study.

• For fine scale simulations, we use a mixture of LAMMPS (Plimpton, 1995) and proven
analytic solutions; however, one could easily switch to another MD solution as long as
they have similar capabilities.

• Since the effectiveness of machine learning methods varies depending on the available
training data and problem, an additional check for any machine learning solution is added
to the framework. In the GLUE Code, we query the models provided by the machine
learning solution for the output associated with our inputs. The surrogate model then
provides both the expected outputs and the uncertainty quantification to indicate its
confidence that this specific model gave a valid answer. If the confidence is too low,
the code falls back to calling the actual MD simulation and providing the data for the
machine learning solution to retrain and generate a new surrogate model for future use.

Concurrent multiscale simulations
As depicted in Fig. 1, the parallelism of the Coarse Grain Solver is fully dependent on the solver
of choice; however, the GLUECode_Library provides MPI interfaces to support distributed
applications and all couplings thus far (barring hand-written tests for CI purposes) were with
distributed coarse grain simulations. Initial efforts were made to make the GLUECode_Library

calls non-blocking (similar to non-blocking communication in MPI), but this was given low
priority as the coarse grain solvers considered thus far have comparatively fast time steps
relative to the fine grain solvers and do not have a significant amount of work that can be
overlapped with the cost of the GLUE Code. Similarly, there was work on providing a thread-safe
interface for on-node parallelism (e.g. OpenMP), but this was similarly given low priority.

A single GLUECode_Service is primarily a series of sequential operations that occur in a
persistent service and is built around monitoring a task queue. Said task queue allows for
parallelism via the use of HPC Job Schedulers, but the actual computation/generation of
ML models, as well as processing of requests and results, is sequential. That said, multiple
GLUECode_Service instances can be run in parallel, and this has been done as a way to lessen
congestion for particularly large simulation.

The Fine Grain Solver is once again dependent on the solver. We have worked with both
GPU-enabled LAMMPS and MPI-enabled LAMMPS and the SlurmScheduler and FluxScheduler
parts of our json schema (https://github.com/lanl/GLUE/blob/1.0/docs/inputSchema.json)
are specifically set up to provide these configurations.

The overall GLUECode has a high degree of concurrency and resembles fork-join paral-
lelism/MapReduce in practice, even if it consists of sequential tasks/stages.

Load imbalance
We have implemented traditional approaches for load balancing used by asynchronous task-
based runtimes that rely on some form of a task queue and then various work-stealing algorithms.

Pachalieva et al. (2022). GLUE Code: A framework handling communication and interfaces between scales. Journal of Open Source Software,
7(80), 4822. https://doi.org/10.21105/joss.04822.

4

https://github.com/lanl/GLUE/blob/1.0/docs/inputSchema.json
https://doi.org/10.21105/joss.04822


However, due to the granularity of our tasks, we offload these tasks to HPC job schedulers like
Slurm and Flux. By putting this work into a job queue, we can use proven tools to schedule
those in an efficient manner.

To reduce the load that need to be balanced, we preprocess the requests prior to calling
functions/subroutines like bgk_req_batch_subr_f(). Aspects of this can be found in the
function preprocess_icf(). Future work will include better domain-aware scheduling and
optimizations but, at this stage, we have minimized this so as to stress-test the overall
GLUECode interface as well as evaluate the benefits of active learning-based models.

Multiple formats and parsing tools
We only provide the interfaces required for the coupling that we are working on, as one
of the primary goals of this project was to provide a minimally invasive tool. Domain
experts are the most knowledgeable in terms of what they need from each level of the
simulation; therefore, we largely use co-design to define interfaces (e.g., https://github.com/
lanl/GLUE/blob/1.0/GLUECode_Library/src/include/alInterface.h) as well as using control
variables in the overall system configuration to utilize the appropriate tools (e.g., https:
//github.com/lanl/GLUE/blob/1.0/GLUECode_Service/processBGKResult.py) to generate
and post-process results.

The existing tools will be generalized as necessary as new couplings are added. However, we
aim to keep the interface relatively clean, allowing domain experts to take advantage of their
knowledge and experience with tools like LAMMPS rather than rely on us to provide all the
interfaces they need.

Code structure
The GLUE code is organized as follows:

• GLUECode_Library contains the C++ library that is meant to be linked to the coarse
grain solver. This allows existing applications to couple to the GLUECode_Service with
minimal code alterations.

• GLUECode_Service contains the Python scripts that the library communicates with and
uses a combination of active learning and spawning of fine grain simulation jobs to
enable and accelerate multiscale scientific applications.

• docs contains documentation for the Flux scheduler.

• examples contains sniff tests for the serial and the MPI versions of the code, and utility
scripts, such as pullICFData.py that demonstrate how the GLUE Code framework can
be used to access training data to perform deeper analysis.

• jsonFiles contains example input decks for the GLUE Code service.

• lammpsFiles contains LAMMPS example scripts (in.Argon_Deuterium_masses and
in.Argon_Deuterium_plasma) that compute the mutual diffusion for a plasma composed
of argon and deuterium at different concentrations and temperatures. More information
about the test cases can be found within the files.

• training contains training data required for active learning.

Acknowledgements
The research presented in this article was supported by the Laboratory Directed Research
and Development program of Los Alamos National Laboratory (LANL) under project number
20190005DR and used resources provided by the LANL Institutional Computing Program.

Pachalieva et al. (2022). GLUE Code: A framework handling communication and interfaces between scales. Journal of Open Source Software,
7(80), 4822. https://doi.org/10.21105/joss.04822.

5

https://github.com/lanl/GLUE/blob/1.0/GLUECode_Library/src/include/alInterface.h
https://github.com/lanl/GLUE/blob/1.0/GLUECode_Library/src/include/alInterface.h
https://github.com/lanl/GLUE/blob/1.0/GLUECode_Service/processBGKResult.py
https://github.com/lanl/GLUE/blob/1.0/GLUECode_Service/processBGKResult.py
https://doi.org/10.21105/joss.04822


We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD
Program for this work. AP and JS also acknowledge the Center for Non-Linear Studies at
LANL. LANL is operated by Triad National Security, LLC, for the National Nuclear Security
Administration of U.S. Department of Energy (Contract No. 89233218CNA000001). Assigned
LA-UR-22-29746.

Ahn, D. H., Bass, N., Chu, A., Garlick, J., Grondona, M., Herbein, S., Koning, J., Patki, T.,
Scogland, T. R., & Springmeyer, B. (2018). Workflows in support of large-scale science
(WORKS’18). Proceedings of the 2018 ACM/IEEE Workflows in Support of Large-Scale
Science (WORKS’18), 10–19.

Cappello, F. (2009). Fault tolerance in petascale/exascale systems: Current knowledge,
challenges and research opportunities. The International Journal of High Performance
Computing Applications, 23(3), 212–226. https://doi.org/10.1177/1094342009106189

Diaw, A., Barros, K., Haack, J., Junghans, C., Keenan, B., Li, Y., Livescu, D., Lubbers, N.,
McKerns, M., Pavel, R., & others. (2020). Multiscale simulation of plasma flows using
active learning. Physical Review E, 102(2), 023310. https://doi.org/10.1103/physreve.
102.023310

Glosli, J. N., Richards, D. F., Caspersen, K. J., Rudd, R. E., Gunnels, J. A., & Streitz, F. H.
(2007). Extending stability beyond CPU millennium: A micron-scale atomistic simulation
of Kelvin-Helmholtz instability. SC’07: Proceedings of the 2007 ACM/IEEE Conference on
Supercomputing, 1–11. https://doi.org/10.1145/1362622.1362700

Haack, J., Diaw, A., Pavel, R., Sagert, I., Keenan, B., Livescu, D., Lubbers, N., McKerns, M.,
Junghans, C., & Germann, T. (2021). Enabling predictive scale-bridging simulations through
active learning. APS Division of Plasma Physics Meeting Abstracts, 2021, ZO03–012.

Karra, S., Mehana, M., Lubbers, N., Chen, Y., Diaw, A., Santos, J. E., Pachalieva, A., Pavel,
R. S., Haack, J. R., McKerns, M., & others. (2022). Predictive scale-bridging simulations
through active learning. arXiv Preprint arXiv:2209.09811. https://doi.org/10.48550/
ARXIV.2209.09811

Koo, R., & Toueg, S. (1987). Checkpointing and rollback-recovery for distributed systems.
IEEE Transactions on Software Engineering, 1, 23–31.

Krekeler, C., Agarwal, A., Junghans, C., Praprotnik, M., & Delle Site, L. (2018). Adaptive
resolution molecular dynamics technique: Down to the essential. The Journal of Chemical
Physics, 149(2), 024104. https://doi.org/10.1063/1.5031206

Liboff, R. L. (1959). Transport coefficients determined using the shielded Coulomb potential.
The Physics of Fluids, 2(1), 40–46. https://doi.org/10.1063/1.1724389

Los Alamos National Laboratory. (n.d.). LANL/Multi-BGK: Conservative multispecies kinetic
equation solver. In GitHub. https://github.com/lanl/Multi-BGK

Lubbers, N., Agarwal, A., Chen, Y., Son, S., Mehana, M., Kang, Q., Karra, S., Junghans,
C., Germann, T. C., & Viswanathan, H. S. (2020). Modeling and scale-bridging using
machine learning: Nanoconfinement effects in porous media. Scientific Reports, 10(1),
1–13. https://doi.org/10.1038/s41598-020-69661-0

Marinak, M., Haan, S., Dittrich, T., Tipton, R., & Zimmerman, G. (1998). A comparison of
three-dimensional multimode hydrodynamic instability growth on various National Ignition
Facility capsule designs with HYDRA simulations. Physics of Plasmas, 5(4), 1125–1132.
https://doi.org/10.1063/1.872643

McKerns, M. M., Strand, L., Sullivan, T., Fang, A., & Aivazis, M. A. (2011). Building a
framework for predictive science. Proceedings of the 10th Python in Science Conference,
arXiv Preprint arXiv:1202.1056. https://doi.org/10.48550/arXiv.1202.1056

Pachalieva et al. (2022). GLUE Code: A framework handling communication and interfaces between scales. Journal of Open Source Software,
7(80), 4822. https://doi.org/10.21105/joss.04822.

6

https://doi.org/10.1177/1094342009106189
https://doi.org/10.1103/physreve.102.023310
https://doi.org/10.1103/physreve.102.023310
https://doi.org/10.1145/1362622.1362700
https://doi.org/10.48550/ARXIV.2209.09811
https://doi.org/10.48550/ARXIV.2209.09811
https://doi.org/10.1063/1.5031206
https://doi.org/10.1063/1.1724389
https://github.com/lanl/Multi-BGK
https://doi.org/10.1038/s41598-020-69661-0
https://doi.org/10.1063/1.872643
https://doi.org/10.48550/arXiv.1202.1056
https://doi.org/10.21105/joss.04822


Michael McKerns, P. H., & Aivazis, M. (2019). Mystic: Highly-constrained non-convex
optimization and UQ. https://uqfoundation.github.io/project/mystic

Nagarajan, A., Junghans, C., & Matysiak, S. (2013). Multiscale simulation of liquid water using
a four-to-one mapping for coarse-graining. Journal of Chemical Theory and Computation,
9(11), 5168–5175. https://doi.org/10.1021/ct400566j

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., … Chintala, S. (2019). PyTorch: An
imperative style, high-performance deep learning library. 8024–8035. http://papers.neurips.
cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Pavel, R. S., McPherson, A. L., Germann, T. C., & Junghans, C. (2015). Database assisted
distribution to improve fault tolerance for multiphysics applications. Proceedings of the 2nd
International Workshop on Hardware-Software Co-Design for High Performance Computing,
1–8. https://doi.org/10.1145/2834899.2834908

Pavel, R., Junghans, C., Mniszewski, S. M., & Germann, T. C. (2017). Using Charm++
to support multiscale multiphysics on the Trinity supercomputer. Proceedings of the
Programming Models and Co-Design Meeting.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., & others. (2011). Scikit-learn: Machine learning
in Python. The Journal of Machine Learning Research, 12, 2825–2830.

Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics. Journal of
Computational Physics, 117 (1), 1–19. https://doi.org/10.2172/10176421

Rinderknecht, H., Sio, H., Li, C., Zylstra, A., Rosenberg, M., Amendt, P., Delettrez, J., Bellei,
C., Frenje, J., Johnson, M. G., & others. (2014). First observations of nonhydrodynamic
mix at the fuel-shell interface in shock-driven inertial confinement implosions. Physical
Review Letters, 112(13), 135001. https://doi.org/10.1103/physrevlett.112.135001

Rosenberg, M., Séguin, F., Amendt, P., Atzeni, S., Rinderknecht, H., Hoffman, N., Zylstra, A.,
Li, C., Sio, H., Gatu Johnson, M., & others. (2015). Assessment of ion kinetic effects in
shock-driven inertial confinement fusion implosions using fusion burn imaging. Physics of
Plasmas, 22(6), 062702. https://doi.org/10.1063/1.4921935

Ross, J., Higginson, D., Ryutov, D., Fiuza, F., Hatarik, R., Huntington, C., Kalantar, D., Link,
A., Pollock, B., Remington, B., & others. (2017). Transition from collisional to collisionless
regimes in interpenetrating plasma flows on the National Ignition Facility. Physical Review
Letters, 118(18), 185003. https://doi.org/10.1103/PhysRevLett.118.185003

Yoo, A. B., Jette, M. A., & Grondona, M. (2003). Slurm: Simple Linux utility for resource
management. Workshop on Job Scheduling Strategies for Parallel Processing, 44–60.
https://doi.org/10.1007/10968987_3

Pachalieva et al. (2022). GLUE Code: A framework handling communication and interfaces between scales. Journal of Open Source Software,
7(80), 4822. https://doi.org/10.21105/joss.04822.

7

https://uqfoundation.github.io/project/mystic
https://doi.org/10.1021/ct400566j
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1145/2834899.2834908
https://doi.org/10.2172/10176421
https://doi.org/10.1103/physrevlett.112.135001
https://doi.org/10.1063/1.4921935
https://doi.org/10.1103/PhysRevLett.118.185003
https://doi.org/10.1007/10968987_3
https://doi.org/10.21105/joss.04822

	Summary
	State of the art
	Statement of need
	Concurrent multiscale simulations
	Load imbalance
	Multiple formats and parsing tools

	Code structure
	Acknowledgements

