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Summary
Linopy is an open-source package written in Python to build and process linear and mixed-
integer optimization with n-dimensional labeled input data. Using state-of-the-art data analysis
packages, Linopy enables a high-level algebraic syntax and memory-efficient, fast communication
with open and proprietary solvers. While similar packages use object-oriented implementations
of single variables and constraints, Linopy stores and processes its data in an array-based data
model. This allows the user to build large optimization models quickly and lays the foundation
for features such as fast writing to array-oriented scientific data formats, masking, automatic
solving on remote servers and model scaling.

Statement of need
Decades after its inception (Dantzig, 1963), mathematical optimization is nowadays of immense
importance for business, industry and governmental decision-making. Optimization is used
to address various sorts of complex problems, such as challenges related to climate change,
energy transitions, and food supply. Typically, an optimization problem, i.e. a mathematical
program, consists of one objective function to be numerically minimized and a set of constraints
that restrict the underlying variables to external conditions. Algebraic Modeling Languages
(AML) aim at facilitating mathematical programming by allowing the user to formulate large
scale, complex problems with a high-level syntax similar to the mathematical notation. The
formulated problem is then passed to the solver of choice where a solution is calculated. AMLs
provide the most user-friendly interface possible to various solvers, each with its own set of
features.

Well established AMLs such as GAMS (Bussieck & Meeraus, 2004) and AMPL (Fourer et
al., 1990) support a wide range of solvers, but are license-restricted and rely on closed-source
code. In contrast, AMLs as JuMP (Dunning et al., 2017), CVXPY (Diamond & Boyd, 2016),
Pyomo (Hart et al., 2017), GEKKO (Beal et al., 2018) and PuLP (Mitchel et al., 2022) are
open-source and have gained increasing attention throughout the recent years. While the
Julia package JuMP is characterized by high-performance, in-memory communication with the
solvers, the Python packages Pyomo, GEKKO and PuLP lack parallelized, low-level operations
and communicate slower with the solver via intermediate files written to disk. An exception
is CVXPY, which supports fast array-based operations and uses low-level wrappers to the
solvers. However, it is common among Python AMLs not to make use of state-of-the-art
data handling packages. In particular, the assignment of coordinates or indexes is often not
supported or memory extensive due to use of an object-oriented implementation where every
single combination of coordinates is stored separately.

Linopy is an open-source Python package representing a new kind of AML that tackles these
issues together. By introducing an array-based data model for variables and constraints, Linopy
makes mathematical programming compatible with Python’s advanced data handling packages
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Numpy (Harris et al., 2020), Pandas (Reback et al., 2022) and Xarray (Hoyer & Hamman,
2017).

The approach follows the idea that a variable 𝑥(𝑑1, 𝑑2, ..., 𝑑𝐾) may be defined on an arbitrary
number of 𝐾 ≥ 0 dimensions, each dimension spanning over a set of 𝑁𝑖 discrete coordinates
of arbitrary data type (integer, string, date-time, etc.), i.e. 𝑑𝑖 ∈ {𝑐𝑖,1, ..., 𝑐𝑖,𝑁}. The variable
𝑥(𝑑1, 𝑑2, ..., 𝑑𝐾) is then stored as an array of shape 𝑁1 ×𝑁2 × ... × 𝑁𝐾 containing integer
labels referencing the optimization variables used by the solver. Coordinates are automatically
aligned when variables are used in linear expressions or when applying built-in functions, such
as summing over specific dimension or grouping by user-defined labels. Note that if a variable
should not be defined on the full set of coordinates given by {𝑑1, 𝑑2, ..., 𝑑𝐾}, a boolean mask
of the same shape may be used to select where the variable is defined and where not.

The array-based modelling approach does not only lead to more flexibility but also increases
the overall performance. The following figure shows the benchmark against the AMLs JuMP,
Pyomo, PuLP and CVXPY as well as the solver specific interface Gurobipy. The included AMLs
packages are all open source and well-established and therefore suitable for comparison. Linopy
outperforms all Python AMLs in memory efficiency and is close to CVXPY and Gurobipy in
terms of speed while being faster than JuMP.
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Figure 1: Benchmark of Linopy against comparable packages. The producing Snakemake workflow is
available here. The software and hardware specifications are detailed here. The benchmark is based
on a 1-dimensional knapsack problem and uses the Gurobi solver. The overhead is calculated from the
difference of the whole solving process via the AML and the solving process on the solver side alone.
Note that the benchmark is hardly dependent on the complexity of the problem. Thus, adding more
terms to the constraints, setting different kind of index labels or changing it to a purely linear problem
does hardly have an effect on the overhead.

Due to a strong alignment to the Xarray package, Linopy supports storing the optimization
model as a NetCDF file (Rew & Davis, 1990), which allows users to quickly share optimization
problems with others. Using the Paramiko package, Linopy offers the user to send unsolved
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problems to a server and retrieve the solution after running the optimization remotely, which is
particularly helpful if large computing resources are needed.

Linopy supports a list of well-established solvers, namely

• GLPK (GLPK - GNU Project - Free Software Foundation (FSF), n.d.)
• CBC (Forrest et al., 2022)
• HiGHS (Huangfu & Hall, 2018)
• Gurobi (“Gurobi - The Fastest Solver,” n.d.)
• Xpress (“FICO® Xpress Solver,” n.d.)
• CPLEX (Cplex, 2009)

while other solvers such as PIPS-IPM++ (Rehfeldt et al., 2022), the SCIP solver (Bestuzheva et
al., 2021) and MOSEK (ApS, 2019) are planned to be integrated in future versions. Further,
upcoming features target model coefficient scaling as for example presented and performed in
(Morshed & Noor-E-Alam, 2020) and (Göke, 2021) as well as the integration of non-linear
expressions.

Related Research
Linopy is used by several research projects and groups, mostly related to energy system
modelling. The energy system modelling tool PyPSA package (Brown et al., 2018), which
is used by various institutions and builds the core of the PyPSA-Eur workflow (Hörsch et al.,
2018),(Brown et al., 2018), uses Linopy as the primary optimization interface. The Fraunhofer
Institute for Energy Economics and Energy System Technology is using Linopy in order to
create an interface to GPU-based solvers. The German Aerospace Center uses Linopy for
calculating stochastic optimization problems. Finally, a TU Berlin and Google Inc. cooperate
on a research project that uses Linopy to analyze system-level impacts of 24/7 carbon-free
electricity procurement in Europe.

Availability
Stable versions of the Linopy package are available for Linux, MacOS and Windows via pip in
the Python Package Index (PyPI). Development branches are available in the project’s GitHub
repository together with a documentation on Read the Docs. For continuous integration,
Linopy uses automated tests on Github together with Pre-Commit hooks. The Linopy package
is released under GPLv3 and welcomes contributions via the project’s GitHub repository.
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