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Summary
Structural determination of proteins has been a central scientific focus since the early 1960s
(Dill et al., 2008) with technological advances facilitating experimental structures of stable,
folded proteins by nuclear magnetic resonance (NMR) spectroscopy (Kanelis et al., 2001),
X-ray crystallography (Smyth, 2000), and cryo-electron microscopy (Malhotra et al., 2019), as
well as the recent computational prediction of structures (Baek et al., 2021; Jumper et al.,
2021). Modeling intrinsically disordered proteins (IDPs) and intrinsically disordered regions
(IDRs), however, remains challenging due to their highly dynamic nature and low propensity to
form low energy folded structures (Mittag & Forman-Kay, 2007).

Currently, approaches to model IDPs/IDRs generally start with initial pools of structures that
sample potentially accessible conformations and then utilize experimental data to narrow the
pool. One method to generate initial conformational ensembles of IDPs/IDRs uses sampling
techniques such as in TraDES (Feldman & Hogue, 2000, 2001), Flexible-meccano (Ozenne et
al., 2012), FastFloppyTail (Ferrie & Petersson, 2020), IDPConformerGenerator (Teixeira et al.,
2022), and others (Estaña et al., 2019), that rely on the torsion angle distributions found in
high-resolution folded protein structures deposited in the RCSB Protein Data Bank (Berman,
2000). Another more computationally expensive approach generates conformational ensembles
using molecular dynamics (MD) simulations with different force-fields (Robustelli et al., 2018;
Salvi et al., 2016).

After generating the initial pool of structures, back-calculations to experimental data and
reweighting using Monte-Carlo (Krzeminski et al., 2012) or Bayesian statistics (Bottaro et
al., 2020; Brookes & Head-Gordon, 2016; Lincoff et al., 2020) can be performed to define
structural ensembles that better match solution NMR, small-angle X-ray scattering (SAXS),
single molecule fluorescence (SMF), and other experimentally obtained data from these
IDPs/IDRs. An emerging method to generate conformations of IDPs/IDRs uses machine
learning generative models based on ensembles generated from sampling or MD techniques as
training data and reinforces learning with experimental data (Zhang et al., 2022). Both of these
general approaches rely on back-calculation of “experimental observables” from coordinates of
conformers within the ensembles, a task that is increasingly complex due to the various models
for interpretation of experimental data and the numerous tools available.

Here we present SPyCi-PDB, designed to facilitate and streamline this back-calculation stage
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by acting as a platform for internal back-calculator functions as well as published third-party
software, utilizing PDB structures of disordered protein conformations. One goal of SPyCi-
PDB is to minimize the existing issues with different data-formats from software and scripts
within the IDP/IDR research community and improve accessibility to researchers with a range
of computational expertise. In this release, SPyCi-PDB can back-calculate NMR chemical
shift (CS), paramagnetic resonance enhancement (PRE), nuclear Overhauser effect (NOE),
3J-HNHA coupling (JC), and residual dipolar coupling (RDC) data; hydrodynamic radius (Rh)
data from NMR, light scattering, or size exclusion chromatography; SAXS; and single-molecule
fluorescence resonance energy transfer (smFRET) values from all-atom PDB structures of
IDP/IDR conformations.

Statement of Need
As new software packages and in silico methodologies emerge to better model IDP/IDR
structures, back-calculations to multiple experimental datatypes are required to quantitatively
assess the conformers generated. However, interpretation of solution data, as a simple
calculation from the sum of sampled conformations within IDP/IDR ensembles is fraught with
pitfalls. For example, commonly used approaches for back-calculating NOE and PRE data for
dynamic protein systems treat only the distance and do not incorporate the contribution of
dynamics of the vector connecting the interacting points, potentially leading to underestimations
of the potential range of distances sampled (Brookes & Head-Gordon, 2016; Krzeminski et
al., 2012; Lincoff et al., 2020). In addition, even for stable systems, back-calculation is not
trivial, with even state-of-the-art back-calculators of chemical shifts, such as in UCBShift
(Li et al., 2020), leading to errors that can be large relative to the expected deviation of
experimental values. Given the rapidly developing nature of different software tools to perform
back-calculations, SPyCi-PDB should assist by providing a user-friendly, all-in-one package
to reduce time and confusion in this back-calculation step as well as open opportunities for
future collaborations and integration of new experimental datatypes. Furthermore, SPyCi-PDB
aims to unify different input and output data formats from different experimental datatypes
to increase productivity and accelerate research. As stated in the documentation hosted by
ReadTheDocs, input formats are conventional comma-delimited tables (e.g. .CSV, .TXT),
while the output format is human-readable .JSON files that can be easily manipulated using
Python or other software based on the user’s ultimate needs. SPyCi-PDB was also developed
to integrate into the IDPConformerGenerator platform (Teixeira et al., 2022).

Ultimately, given the complicated and dynamic exchanging nature of IDPs, new back-calculators
are needed to be developed to address the current challenges in interpretation. By creating a
tool with modularity and best practices, we aim to encourage the researcher community to
contribute towards this platform to further the goal of improved modelling of IDPs and IDRs.

Implementation
As spycipdb is written completely in Python, it is compatible with any platform able to execute
Python (>=3.8, <4.0). However, certain third-party extensions to perform back-calculations
(SAXS and RDC) have only been tested on 64-bit Ubuntu 18.04.X LTS and 20.04.X LTS, as
well as WSL 2.0 on 64-bit Windows 11.

In the production version 0.3.5, four out of eight modules of SPyCi-PDB’s back-calculators
(pre, noe, jc, smfret) use internal mathematical equations and PDB structure processing
algorithms from IDPConformerGenerator libraries (Teixeira et al., 2022). The pre (1) and noe

(2) module calculates scalar distances between pairs of atoms according to the pairs derived
from the experimental template. It utilizes an algorithm that matches atom names of each
residue with allowance for multiple assignments for noe. The jc (3) module uses the Karplus
curve, a simple cosine function, to back-calculate the desired J-couplings according to residue
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number as provided by the experimental template file (Pérez et al., 2001). Finally, the smfret

(4) module takes into consideration residue pairs and a scale factor to adjust for dye size from
the experimental setup to back-calculate distances between two alpha-Carbon (CA) atoms
(Lincoff et al., 2020). The aforementioned equations are as follows:

√𝛿𝑥2 + 𝛿𝑦2 + 𝛿𝑧2 (1)

6√((𝛿𝑥
2 + 𝛿𝑦2 + 𝛿𝑧2)3

𝑁
(2)

cos(𝜑 − 𝜋
3
) (3)

1

1 + (
𝐷⋅√ |𝑅1−𝑅2|+7

𝑅1−𝑅2
𝑆 )6

(4)

Where δx, δy, δz are the Cartesian differences between two atoms of interest (1, 2), N represents
the number of combinations for NOE atom pairs (2), φ is the Phi torsion angle of interest
(3), D is the scalar distance between the residues of interest with R1 and R2 being the vector
Cartesian coordinates for the residues and S being the scale factor according to experimental
information.

The remaining 4 modules (cs, saxs, rh, rdc) call upon third-party academic software: UCBShift,
a machine learning algorithm that uses structural alignment for experimental chemical shift
replication and employs a random forest regression on curated data to most accurately predict
protein chemical shifts (Li et al., 2020); CRYSOL v3, an updated version of the well-established
SAXS back-calculator from ATSAS that can now evaluate the hydration shell by populating the
protein structure with dummy water (Franke et al., 2017); HullRad, to calculate hydrodynamic
radius (Rh) by using a convex hull model to estimate the hydrodynamic properties of a
macromolecule (Fleming & Fleming, 2018); and PALES, using the steric obstruction model to
derive dipolar coupling (RDC) information from the average orientation of the 3D coordinates
(Zweckstetter & Bax, 2000). Thorough testing of each module has been performed to ensure
smooth installation and troubleshooting, as well as retaining or providing multiprocessing
capabilities that may not have been implemented in their standalone forms. When choosing
third-party software, we prioritized those written in Python for ease of integration.

We plan to integrate alternative methods to calculate experimental datatypes internally, such
as using a parameterizable fluorescence lifetime and the Förster distance, as used in the
Naudi-Fabra et al. study of describing intrinsically disordered proteins using smFRET, NMR,
and SAXS (Naudi-Fabra et al., 2021). Future additions to the SPyCi-PDB interface suite are
welcome and easy to perform given its modular design.

Detailed installation/troubleshooting instructions, real-world usage examples, and input/out-
put formats are provided both in the project’s documentation hosted on ReadTheDocs
(https://spyci-pdb.readthedocs.io/en/stable/) and within the modules through the --help

argument. Plots of sample outputs from the jc, rh, pre, and noe modules using the example
structures and data in the repository are shown in Figure 1.

Comparing the back-calculated PRE and NOE distance values to the experimental observables,
the default Euclidean distance interpretation yields some values agreeing with the experimental
range (Figure 1C, 1D). With a greater sample size, we would likely capture more back-calculated
data agreeing with the experimental ranges. The internal plotting features in the noe, pre,
rh, and jc modules of SPyCi-PDB is useful for users to gauge the quality of the initial pool
before downstream reweighting. Furthermore, with the integration of different back-calculation
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methods, these plots will provide the user with a useful comparison between back-calculation
philosophies.

Figure 1: Plots of distributions of back-calculated experimental data of 100 structures of the unfolded
state of the Drk N-terminal SH3 domain (drkN SH3) generated using IDPConformerGenerator (Teixeira
et al., 2022). Panel (A) shows back-calculated 3J-HNHA couplings in Hz based on the Karplus equation
with A, B, and C constants from Lincoff et al. (Lincoff et al., 2020). Only residues with experimental
data to compare will generate a back-calculated J coupling value. Panel (B) shows the distribution of
back-calculated Rh values in Angstroms using HullRad (Fleming & Fleming, 2018). Panels (C) and (D)
show twenty randomly selected pairs of back-calculated PRE and NOE distances, respectively. The ranges
of experimental values are represented as grey boxes while back-calculated values for each conformer are
shown as red dots.
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The motivation behind this project was to create a modular-yet-standalone software package to
back-calculate experimental datatypes for conformers generated by the IDPConformerGenerator
(Teixeira et al., 2022) platform.
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