
hstrat: a Python Package for phylogenetic inference
on distributed digital evolution populations
Matthew Andres Moreno 1, Emily Dolson 1, and Charles Ofria 1

1 Michigan State University
DOI: 10.21105/joss.04866

Software
• Review
• Repository
• Archive

Editor: Øystein Sørensen
Reviewers:

• @GeekLogan
• @JJ
• @kgd-al

Submitted: 16 October 2022
Published: 16 December 2022

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Digital evolution systems instantiate evolutionary processes over populations of virtual agents
in silico. These programs can serve as rich experimental model systems. Insights from digital
evolution experiments expand evolutionary theory, and can often directly improve heuristic
optimization techniques (Hernandez, Lalejini, & Dolson, 2022a; Hernandez, Lalejini, & Ofria,
2022). Perfect observability, in particular, enables in silico experiments that would be otherwise
impossible in vitro or in vivo. Notably, availability of the full evolutionary history (phylogeny) of
a given population enables very powerful analyses (Dolson & Ofria, 2018; Hernandez, Lalejini,
& Dolson, 2022b; Shahbandegan et al., 2022).

As a slow but highly parallelizable process, digital evolution will benefit greatly by continuing to
capitalize on profound advances in parallel and distributed computing (D. Ackley & Small, 2014;
Moreno & Ofria, 2020), particularly emerging unconventional computing architectures (D. H.
Ackley & Williams, 2011; Furber et al., 2014; Lauterbach, 2021). However, scaling up digital
evolution presents many challenges. Among these is the existing centralized perfect-tracking
phylogenetic data collection model (Bohm et al., 2017; De Rainville et al., 2012; Godin-Dubois
et al., 2019; Ofria et al., 2020; Ofria & Wilke, 2004), which is inefficient and difficult to realize
in parallel and distributed contexts. Here, we implement an alternative approach to tracking
phylogenies across vast and potentially unreliable hardware networks.

Moreno et al. (2022). hstrat: a Python Package for phylogenetic inference on distributed digital evolution populations. Journal of Open Source
Software, 7(80), 4866. https://doi.org/10.21105/joss.04866.

1

https://orcid.org/0000-0003-4726-4479
https://orcid.org/0000-0001-8616-4898
https://orcid.org/0000-0003-2924-1732
https://doi.org/10.21105/joss.04866
https://github.com/openjournals/joss-reviews/issues/4866
https://github.com/mmore500/hstrat
https://doi.org/10.5281/zenodo.7416592
https://osorensen.rbind.io/
https://orcid.org/0000-0003-0724-3542
https://github.com/GeekLogan
https://github.com/JJ
https://github.com/kgd-al
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04866


Figure 1: Example scenario of hereditary stratigraph annotation inheritance. Each generation, a new
randomly-generated “fingerprint” (drawn as a solid-colored rectangle) is appended to the genome
annotation. Genomes’ annotations will share identical fingerprints for the generations they experienced
shared ancestry. Estimation of the most recent common ancestor (MRCA) generation is straightforward:
the first mismatching fingerprints denote the end of common ancestry.

The hstrat Python library exists to facilitate application of hereditary stratigraphy, a cutting-
edge technique to enable phylogenetic inference over distributed digital evolution populations
(Moreno et al., 2022). This technique departs from the traditional perfect-tracking approach
to phylogenetic record-keeping. Instead, hereditary stratigraphy enables phylogenetic history to
be inferred from heritable annotations attached to evolving digital agents. This approach aligns
with phylogenetic reconstruction methodologies in evolutionary biology (Gaffney, 1979; Horner
& Pesole, 2004). Hereditary stratigraphy attaches a set of immutable historical “checkpoints”
— referred to as strata — as an annotation on evolving genomes. Figure 1 illustrates how
these strata accumulate over generations and how they can be used to infer the phylogenetic
relationships.

Checkpoints can be strategically discarded to reduce annotation size at the cost of increasing
inference uncertainty. A particular strategy for which checkpoints to discard when is referred to
as a stratum retention policy. We refer to the set of retained strata as a hereditary stratigraphic
column.

Appropriate stratum retention policy choice varies by application. For example, if annotation
size is not a concern it may be best to preserve all strata. In other situations, it may be
necessary to constrain annotation size to remain within a fixed memory budget.

Key features of the library include:

• object-oriented hereditary stratigraphic column implementation to annotate arbitrary
genomes,

• modular interchangeability and user extensibility of stratum retention policies,
• programmatic interface to query guarantees and behavior of stratum retention policy,
• modular interchangeability and user extensibility of back-end data structure used to store

annotation data,
• a suite of visualization tools to elucidate stratum retention policies,
• support for automatic parameterization of stratum retention policies to meet user size

complexity or inference precision specifications,

Moreno et al. (2022). hstrat: a Python Package for phylogenetic inference on distributed digital evolution populations. Journal of Open Source
Software, 7(80), 4866. https://doi.org/10.21105/joss.04866.

2

https://doi.org/10.21105/joss.04866


• tools to compare two columns and extract information about the phylogenetic relationship
between them,

• extensive documentation hosted on ReadTheDocs,
• a comprehensive test suite to ensure stability and reliability,
• convenient availability as a Python package via the PyPI repository, and
• pure Python implementation to ensure universal portability.

Statement of Need
The hstrat software exists to equip parallel and distributed evolution digital systems —
simulations that instantiate the process of evolution in an agent-based framework — with
phylogenetic tracking capabilities. Parallel and distributed computation exponentiates the power
of digital evolution by allowing for larger populations, more generations, more sophisticated
genotype-phenotype mappings, and more robust fitness functions (Channon, 2019; Harding
& Banzhaf, 2007; Langdon & Banzhaf, 2019; Miikkulainen et al., 2019). Indeed, several
notable projects within the field have successfully exploited massively parallel and distributed
computational resources (Bennett III et al., 1999; Blondeau et al., 2009; Sims, 1994). Further
development of methodology and software such as this work will position the field to continue
leveraging ongoing advances in computing hardware.

The capability to detect phylogenetic cues within digital evolution has become increasingly
necessary in both applied and scientific contexts. These cues unlock post hoc insight into
evolutionary history — particularly with respect to ecology and selection pressure — but also
can be harnessed to drive digital evolution algorithms as they unfold (Burke et al., 2003;
Murphy & Ryan, 2008). However, parallel and distributed evaluation complicates, among
other concerns, maintenance of an evolutionary record. Existing phylogenetic record keeping
requires inerrant and complete collation of birth and death reports within a centralized data
structure. Such perfect tracking approaches are brittle to data loss or corruption and impose
communication overhead.

Hereditary stratigraphy methodology, and the implementing hstrat software library, meets
the demand for efficient, tractable, and robust phylogenetic inference at scale. This approach
exchanges a centralized perfect record of history for a process where history is estimated from
comparison of available extant genomes, aligning with the paradigm of phylogenetic inference
in wet biology.

Although targeted to digital evolution use cases, impact of our work extends beyond to the
various applications of digital evolution. Evolutionary biology poses uniquely abstract, nuanced,
and nebulous questions, such as the origins of life and the evolution of complexity (McShea
& Simpson, 2011; Pross, 2016). Computational modeling provides one foothold for such
inquiry, particularly with respect to phenomena that typically unfold on geological timescales
or hypotheses that invoke counterfactuals outside the bounds of physical reality (Clune et
al., 2011; McKinley et al., 2008; O’Neill, 2003). Elsewhere, in the realm of computational
optimization, heuristic algorithms provide a foothold to explore high-dimensional and deceptive
search spaces (Eiben & Smith, 2015). Improvements to distributed phylogenetic tracking
can benefit both of these niches, providing means to test more sophisticated evolutionary
hypotheses and means to discover better solutions to hard problems.

In addition to its founding purview within digital evolution, we anticipate hereditary stratigraphy
— and this software implementation — may find applications within other domains of distributed
computing. For example, hereditary stratigraphy could equip a population protocol system with
the capability for on-the-fly estimation of the relationship between descendants of a forking
message chain or a forking process tree (Angluin et al., 2006; Aspnes & Ruppert, 2009).

Across all these domains, free availability of the hstrat software will play a central role in
bringing hereditary stratigraphy methodology into practice. Library development incorporates
intentional design choices to promote successful outside use, including

Moreno et al. (2022). hstrat: a Python Package for phylogenetic inference on distributed digital evolution populations. Journal of Open Source
Software, 7(80), 4866. https://doi.org/10.21105/joss.04866.

3

https://hstrat.readthedocs.io
https://readthedocs.io
https://pypi.org/
https://doi.org/10.21105/joss.04866


• modular, hierarchical, well-named, and consistent API,
• comprehensive and application-oriented documentation,
• “batteries included” provision of many stratum retention policy options covering a wide

variety of use cases,
• declarative configuration interfaces (i.e., automatic parameterization), and
• emphasis on user extensibility without modification of core library code.

Projects Using the Software
A pre-release version of this software was used to perform experiments, validate derivations, and
create visualizations for the conference article introducing the method of hereditary stratigraphy
(Moreno et al., 2022).

A native version of this software is being incorporated into the next version of DISHTINY, a
digital framework for studying evolution of multicellularity (Moreno et al., 2021; Moreno &
Ofria, 2022). We also anticipate making this software available through the Modular Agent
Based Evolution framework as a community-contributed component (Bohm et al., 2019).

Related Software
To our knowledge, no existing software is available to facilitate phylogenetic analyses of
fully-distributed digital evolution populations. Centralized phylogenetic tracking, however, is
a common practice in digital evolution systems. Many rely on custom “hand-rolled” solu-
tions. However, several general-purpose libraries and frameworks exist to facilitate centralized
phylogenetic tracking. These include,

• Automated Phylogeny Over Geological Timescales (APOGeT) (Godin-Dubois et al.,
2019),

• Distributed Evolutionary Algorithms in Python (DEAP) (De Rainville et al., 2012),
• Empirical (Ofria et al., 2020), and
• Modular Agent-Based Evolution Framework (MABE) (Bohm et al., 2017).

Empirical, MABE, and APOGeT are C++ libraries. DEAP, eponymously, is a Python library.

Empirical and MABE’s phylogenetic tracking tools cater to asexual lineages, while DEAP
and APOGeT focus on sexual lineages. Both MABE and Empirical incorporate options for
on-the-fly pruning, where records for extinct lineages are deleted in order to temper memory use.
APOGeT focuses on species-level tracking rather than individual-level genealogical tracking.

Note that the DEAP’s distributing computing features are organized around a centralized
controller-worker model. Phylogenetic tracking takes place on the controller process. If any
selection and reproduction takes place on worker processes (i.e., island model), migration is
managed by the controller process. In this scenario, any phylogenetic tracking requires all
phylogenetic history occuring on islands in between migrations to be reported back to the
controller process.

In prepublication work, we performed phylogenetic inference using fixed-length bitstring com-
ponents of digital genomes subjected to bitwise mutation. (This work motivated development
of the more efficient and robust hereditary stratigraph annotation scheme.) A huge number
of biology-oriented phylogenetic reconstruction tools have been developed, but we found the
design of BioPython’s Phylo module particularly well suited to non-DNA data (Cock et al.,
2009).

Future Work
The hstrat project remains under active development.

Moreno et al. (2022). hstrat: a Python Package for phylogenetic inference on distributed digital evolution populations. Journal of Open Source
Software, 7(80), 4866. https://doi.org/10.21105/joss.04866.

4

https://doi.org/10.21105/joss.04866


A major next objective for the hstrat project will be development of a header-only C++ library
to complement the Python library presented here. This implementation will improve memory
and CPU efficiency as well as better integrating with many scientific computing or embedded
systems applications, which often employ native code to meet performance requirements.

This direction opens the possibility of adding support for other high-level languages in the
future (Beazley, 2003). Indeed, at a minimum, we plan to update the Python library to include
support for wrapping these native components (Jakob et al., 2017). However, the pure Python
implementation will remain as a fallback for platforms lacking native support.

As released in version 1.0.1, the hstrat library contains a comprehensive set of tools to perform
pairwise comparisons between extant hereditary stratigraphic columns. However, a key use case
for the library will be phylogenetic reconstruction over entire populations. We plan to expand
the library to add tools for population-level phylogenetic reconstruction and visualization in
future releases.

Although, as currently released, hstrat does support serialization and de-serialization via
Python’s pickle protocol, which suffices for data storage and transfer within and between
Python contexts, human-readable and binary serialization formats intercompatible outside of
Python will be crucial.

Acknowledgements
Thank you to reviewers Kevin Godin-Dubois, Juan Julián Merelo Guervós, and Logan Walker.
Their comments and contributions improved the maintainability of the software, particularly
with respect to improving usability for outside developers.

This research was supported in part by NSF grants DEB-1655715 and DBI-0939454 as well as
by Michigan State University through the computational resources provided by the Institute for
Cyber-Enabled Research. This material is based upon work supported by the National Science
Foundation Graduate Research Fellowship under Grant No. DGE-1424871. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation.

References
Ackley, D. H., & Williams, L. R. (2011). Homeostatic architectures for robust spatial computing.

2011 Fifth IEEE Conference on Self-Adaptive and Self-Organizing Systems Workshops,
91–96. https://doi.org/10.1109/sasow.2011.18

Ackley, D., & Small, T. (2014). Indefinitely scalable computing = artificial life engineering.
14, 606–613. https://doi.org/10.7551/978-0-262-32621-6-ch098

Angluin, D., Aspnes, J., Eisenstat, D., & Ruppert, E. (2006). On the power of anonymous
one-way communication. In J. H. Anderson, G. Prencipe, & R. Wattenhofer (Eds.),
Principles of distributed systems (pp. 396–411). Springer Berlin Heidelberg. https:
//doi.org/10.1007/11795490_30

Aspnes, J., & Ruppert, E. (2009). An introduction to population protocols. 97–120. https:
//doi.org/10.1007/978-3-540-89707-1_5

Beazley, D. M. (2003). Automated scientific software scripting with SWIG. Future Generation
Computer Systems, 19(5), 599–609. https://doi.org/10.1016/s0167-739x(02)00171-1

Bennett III, F. H., Koza, J. R., Shipman, J., & Stiffelman, O. (1999). Building a parallel
computer system for $18,000 that performs a half peta-flop per day. In W. Banzhaf, J. Daida,
A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, & R. E. Smith (Eds.), Proceedings of

Moreno et al. (2022). hstrat: a Python Package for phylogenetic inference on distributed digital evolution populations. Journal of Open Source
Software, 7(80), 4866. https://doi.org/10.21105/joss.04866.

5

https://doi.org/10.1109/sasow.2011.18
https://doi.org/10.7551/978-0-262-32621-6-ch098
https://doi.org/10.1007/11795490_30
https://doi.org/10.1007/11795490_30
https://doi.org/10.1007/978-3-540-89707-1_5
https://doi.org/10.1007/978-3-540-89707-1_5
https://doi.org/10.1016/s0167-739x(02)00171-1
http://www.genetic-programming.com/jkpdf/gecco1999beowulf.pdf
http://www.genetic-programming.com/jkpdf/gecco1999beowulf.pdf
https://doi.org/10.21105/joss.04866


the genetic and evolutionary computation conference (Vol. 2, pp. 1484–1490). Morgan
Kaufmann. ISBN: 1-55860-611-4

Blondeau, A., Cheyer, A., Hodjat, B., & Harrigan, P. (2009). Distributed network for performing
complex algorithms. Google Patents.

Bohm, C., G., N. C., & Hintze, A. (2017). MABE (modular agent based evolver): A framework
for digital evolution research. 14, 76–83. https://doi.org/10.7551/ecal_a_016

Bohm, C., Lalejini, A., Schossau, J., & Ofria, C. (2019). MABE 2.0: An introduction to
MABE and a road map for the future of MABE development. Proceedings of the Genetic
and Evolutionary Computation Conference Companion, 1349–1356. https://doi.org/10.
1145/3319619.3326825

Burke, E. K., Gustafson, S., Kendall, G., & Krasnogor, N. (2003). Is increased diversity in
genetic programming beneficial? An analysis of lineage selection. The 2003 Congress on
Evolutionary Computation, 2003. CEC ’03., 2, 1398–1405 Vol.2. https://doi.org/10.1109/
cec.2003.1299834

Channon, A. (2019). Maximum individual complexity is indefinitely scalable in Geb. Artificial
Life, 25(2), 134–144. https://doi.org/10.1162/artl_a_00285

Clune, J., Goldsby, H. J., Ofria, C., & Pennock, R. T. (2011). Selective pressures for accurate
altruism targeting: Evidence from digital evolution for difficult-to-test aspects of inclusive
fitness theory. Proceedings of the Royal Society B: Biological Sciences, 278(1706), 666–674.
https://doi.org/10.1098/rspb.2010.1557

Cock, P. J. A., Antao, T., Chang, J. T., Chapman, B. A., Cox, C. J., Dalke, A., Friedberg,
I., Hamelryck, T., Kauff, F., Wilczynski, B., & Hoon, M. J. L. de. (2009). Biopython:
Freely available Python tools for computational molecular biology and bioinformatics.
Bioinformatics, 25(11), 1422–1423. https://doi.org/10.1093/bioinformatics/btp163

De Rainville, F.-M., Fortin, F.-A., Gardner, M.-A., Parizeau, M., & Gagné, C. (2012). DEAP: A
Python framework for evolutionary algorithms. Proceedings of the 14th Annual Conference
Companion on Genetic and Evolutionary Computation, 85–92. https://doi.org/10.1145/
2330784.2330799

Dolson, E., & Ofria, C. (2018). Ecological theory provides insights about evolutionary
computation. 105–106. https://doi.org/10.1145/3205651.3205780

Eiben, A. E., & Smith, J. E. (2015). Introduction to evolutionary computing (2nd ed.).
Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-44874-8

Furber, S. B., Galluppi, F., Temple, S., & Plana, L. A. (2014). The SpiNNaker project.
Proceedings of the IEEE, 102(5), 652–665. https://doi.org/10.1109/jproc.2014.2304638

Gaffney, E. S. (1979). An introduction to the logic of phylogeny reconstruction. In Phylogenetic
analysis and paleontology (pp. 79–112). Columbia University Press. https://doi.org/10.
7312/crac92306-005

Godin-Dubois, K., Cussat-Blanc, S., & Duthen, Y. (2019, August). APOGeT: Automated
phylogeny over geological timescales. https://doi.org/10.13140/rg.2.2.33781.93921

Harding, S., & Banzhaf, W. (2007). Fast genetic programming and artificial developmental
systems on GPUs. 21st International Symposium on High Performance Computing Systems
and Applications (HPCS’07), 2–2. https://doi.org/10.1109/hpcs.2007.17

Hernandez, J. G., Lalejini, A., & Dolson, E. (2022a). Phylogenetic diversity predicts fu-
ture success in evolutionary computation. Proceedings of the Genetic and Evolutionary
Computation Conference Companion, 23–24. https://doi.org/10.1145/3520304.3534079

Hernandez, J. G., Lalejini, A., & Dolson, E. (2022b). What can phylogenetic metrics tell us
about useful diversity in evolutionary algorithms? In W. Banzhaf, L. Trujillo, S. Winkler, &

Moreno et al. (2022). hstrat: a Python Package for phylogenetic inference on distributed digital evolution populations. Journal of Open Source
Software, 7(80), 4866. https://doi.org/10.21105/joss.04866.

6

https://doi.org/10.7551/ecal_a_016
https://doi.org/10.1145/3319619.3326825
https://doi.org/10.1145/3319619.3326825
https://doi.org/10.1109/cec.2003.1299834
https://doi.org/10.1109/cec.2003.1299834
https://doi.org/10.1162/artl_a_00285
https://doi.org/10.1098/rspb.2010.1557
https://doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.1145/2330784.2330799
https://doi.org/10.1145/2330784.2330799
https://doi.org/10.1145/3205651.3205780
https://doi.org/10.1007/978-3-662-44874-8
https://doi.org/10.1109/jproc.2014.2304638
https://doi.org/10.7312/crac92306-005
https://doi.org/10.7312/crac92306-005
https://doi.org/10.13140/rg.2.2.33781.93921
https://doi.org/10.1109/hpcs.2007.17
https://doi.org/10.1145/3520304.3534079
https://doi.org/10.21105/joss.04866


B. Worzel (Eds.), Genetic programming theory and practice XVIII (pp. 63–82). Springer
Nature Singapore. https://doi.org/10.1007/978-981-16-8113-4_4

Hernandez, J. G., Lalejini, A., & Ofria, C. (2022). A suite of diagnostic metrics for characterizing
selection schemes. arXiv Preprint arXiv:2204.13839. https://doi.org/10.48550/arxiv.2204.
13839

Horner, D. S., & Pesole, G. (2004). Phylogenetic analyses: A brief introduction to methods
and their application. Expert Review of Molecular Diagnostics, 4(3), 339–350. https:
//doi.org/10.1586/14737159.4.3.339

Jakob, W., Rhinelander, J., & Moldovan, D. (2017). pybind11 – seamless operability between
C++11 and Python.

Langdon, W. B., & Banzhaf, W. (2019). Continuous long-term evolution of genetic program-
ming. 388–395. https://doi.org/10.1162/isal_a_00191

Lauterbach, G. (2021). The path to successful wafer-scale integration: The Cerebras story.
IEEE Micro, 41(6), 52–57. https://doi.org/10.1109/mm.2021.3112025

McKinley, P., Cheng, B. H. C., Ofria, C., Knoester, D., Beckmann, B., & Goldsby, H. (2008).
Harnessing digital evolution. Computer, 41(1), 54–63. https://doi.org/10.1109/mc.2008.17

McShea, D. W., & Simpson, C. (2011). The miscellaneous transitions in evolution. In The
major transitions in evolution revisited. The MIT Press. https://doi.org/10.7551/mitpress/
9780262015240.003.0002

Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink, D., Francon, O., Raju, B.,
Shahrzad, H., Navruzyan, A., Duffy, N., & Hodjat, B. (2019). Evolving deep neural
networks. In R. Kozma, C. Alippi, Y. Choe, & F. C. Morabito (Eds.), Artificial intelligence
in the age of neural networks and brain computing (pp. 293–312). Academic Press.
https://doi.org/10.1016/b978-0-12-815480-9.00015-3

Moreno, M. A., Dolson, E., & Ofria, C. (2022). Hereditary stratigraphy: Genome annotations
to enable phylogenetic inference over distributed populations. Proceedings of the Genetic
and Evolutionary Computation Conference Companion, 65–66. https://doi.org/10.1162/
isal_a_00550

Moreno, M. A., & Ofria, C. (2020). Practical steps toward indefinite scalability: In pursuit
of robust computational substrates for open-ended evolution. OSF. https://doi.org/10.
17605/osf.io/53vgh

Moreno, M. A., & Ofria, C. (2022). Exploring evolved multicellular life histories in a open-
ended digital evolution system. In Frontiers in Ecology and Evolution (Vol. 10). https:
//doi.org/10.3389/fevo.2022.750837

Moreno, M. A., Rodriguez Papa, S., & Ofria, C. (2021). Case study of novelty, complexity,
and adaptation in a multicellular system. The 2021 Conference on Artificial Life.

Murphy, G., & Ryan, C. (2008). A simple powerful constraint for genetic programming. In M.
O’Neill, L. Vanneschi, S. Gustafson, A. I. Esparcia Alcázar, I. De Falco, A. Della Cioppa,
& E. Tarantino (Eds.), Genetic programming (pp. 146–157). Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-540-78671-9_13

O’Neill, B. (2003). Digital evolution. PLOS Biology. https://doi.org/10.1371/journal.pbio.
0000018

Ofria, C., Moreno, M. A., Dolson, E., Lalejini, A., Rodriguez Papa, S., Fenton, J., Perry,
K., Jorgensen, S., hoffmanriley, grenewode, Baldwin Edwards, O., Stredwick, J., cgnitash,
theycallmeHeem, Vostinar, A., Moreno, R., Schossau, J., Zaman, L., & djrain. (2020).
Empirical: C++ library for efficient, reliable, and accessible scientific software (Version
0.0.4) [Computer software]. https://doi.org/10.5281/zenodo.4141943

Moreno et al. (2022). hstrat: a Python Package for phylogenetic inference on distributed digital evolution populations. Journal of Open Source
Software, 7(80), 4866. https://doi.org/10.21105/joss.04866.

7

https://doi.org/10.1007/978-981-16-8113-4_4
https://doi.org/10.48550/arxiv.2204.13839
https://doi.org/10.48550/arxiv.2204.13839
https://doi.org/10.1586/14737159.4.3.339
https://doi.org/10.1586/14737159.4.3.339
https://doi.org/10.1162/isal_a_00191
https://doi.org/10.1109/mm.2021.3112025
https://doi.org/10.1109/mc.2008.17
https://doi.org/10.7551/mitpress/9780262015240.003.0002
https://doi.org/10.7551/mitpress/9780262015240.003.0002
https://doi.org/10.1016/b978-0-12-815480-9.00015-3
https://doi.org/10.1162/isal_a_00550
https://doi.org/10.1162/isal_a_00550
https://doi.org/10.17605/osf.io/53vgh
https://doi.org/10.17605/osf.io/53vgh
https://doi.org/10.3389/fevo.2022.750837
https://doi.org/10.3389/fevo.2022.750837
https://doi.org/10.1007/978-3-540-78671-9_13
https://doi.org/10.1371/journal.pbio.0000018
https://doi.org/10.1371/journal.pbio.0000018
https://doi.org/10.5281/zenodo.4141943
https://doi.org/10.21105/joss.04866


Ofria, C., & Wilke, C. O. (2004). Avida: A software platform for research in computa-
tional evolutionary biology. Artificial Life, 10(2), 191–229. https://doi.org/10.1162/
106454604773563612

Pross, A. (2016). What is life?: How chemistry becomes biology. Oxford University Press.
ISBN: 9780198784791

Shahbandegan, S., Hernandez, J. G., Lalejini, A., & Dolson, E. (2022). Untangling phy-
logenetic diversity’s role in evolutionary computation using a suite of diagnostic fitness
landscapes. Proceedings of the Genetic and Evolutionary Computation Conference Com-
panion, 2322–2325. https://doi.org/10.1145/3520304.3534028

Sims, K. (1994). Evolving 3D morphology and behavior by competition. Artificial Life, 1(4),
353–372. https://doi.org/10.1162/artl.1994.1.4.353

Moreno et al. (2022). hstrat: a Python Package for phylogenetic inference on distributed digital evolution populations. Journal of Open Source
Software, 7(80), 4866. https://doi.org/10.21105/joss.04866.

8

https://doi.org/10.1162/106454604773563612
https://doi.org/10.1162/106454604773563612
https://doi.org/10.1145/3520304.3534028
https://doi.org/10.1162/artl.1994.1.4.353
https://doi.org/10.21105/joss.04866

	Summary
	Statement of Need
	Projects Using the Software
	Related Software
	Future Work
	Acknowledgements
	References

