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Summary
Digital evolution systems instantiate evolutionary processes over populations of virtual agents
in silico. These programs can serve as rich experimental model systems. Insights from digital
evolution experiments expand evolutionary theory, and can often directly improve heuristic
optimization techniques (Hernandez, Lalejini, & Dolson, 2022a; Hernandez, Lalejini, & Ofria,
2022). Perfect observability, in particular, enables in silico experiments that would be otherwise
impossible in vitro or in vivo. Notably, availability of the full evolutionary history (phylogeny) of
a given population enables very powerful analyses (Dolson & Ofria, 2018; Hernandez, Lalejini,
& Dolson, 2022b; Shahbandegan et al., 2022).

As a slow but highly parallelizable process, digital evolution will benefit greatly by continuing to
capitalize on profound advances in parallel and distributed computing (D. Ackley & Small, 2014;
Moreno & Ofria, 2020), particularly emerging unconventional computing architectures (D. H.
Ackley & Williams, 2011; Furber et al., 2014; Lauterbach, 2021). However, scaling up digital
evolution presents many challenges. Among these is the existing centralized perfect-tracking
phylogenetic data collection model (Bohm et al., 2017; De Rainville et al., 2012; Godin-Dubois
et al., 2019; Ofria et al., 2020; Ofria & Wilke, 2004), which is inefficient and difficult to realize
in parallel and distributed contexts. Here, we implement an alternative approach to tracking
phylogenies across vast and potentially unreliable hardware networks.
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Figure 1: Example scenario of hereditary stratigraph annotation inheritance. Each generation, a new
randomly-generated “fingerprint” (drawn as a solid-colored rectangle) is appended to the genome
annotation. Genomes’ annotations will share identical fingerprints for the generations they experienced
shared ancestry. Estimation of the most recent common ancestor (MRCA) generation is straightforward:
the first mismatching fingerprints denote the end of common ancestry.

The hstrat Python library exists to facilitate application of hereditary stratigraphy, a cutting-
edge technique to enable phylogenetic inference over distributed digital evolution populations
(Moreno et al., 2022). This technique departs from the traditional perfect-tracking approach
to phylogenetic record-keeping. Instead, hereditary stratigraphy enables phylogenetic history to
be inferred from heritable annotations attached to evolving digital agents. This approach aligns
with phylogenetic reconstruction methodologies in evolutionary biology (Gaffney, 1979; Horner
& Pesole, 2004). Hereditary stratigraphy attaches a set of immutable historical “checkpoints”
— referred to as strata — as an annotation on evolving genomes. Figure 1 illustrates how
these strata accumulate over generations and how they can be used to infer the phylogenetic
relationships.

Checkpoints can be strategically discarded to reduce annotation size at the cost of increasing
inference uncertainty. A particular strategy for which checkpoints to discard when is referred to
as a stratum retention policy. We refer to the set of retained strata as a hereditary stratigraphic
column.

Appropriate stratum retention policy choice varies by application. For example, if annotation
size is not a concern it may be best to preserve all strata. In other situations, it may be
necessary to constrain annotation size to remain within a fixed memory budget.

Key features of the library include:

• object-oriented hereditary stratigraphic column implementation to annotate arbitrary
genomes,

• modular interchangeability and user extensibility of stratum retention policies,
• programmatic interface to query guarantees and behavior of stratum retention policy,
• modular interchangeability and user extensibility of back-end data structure used to store

annotation data,
• a suite of visualization tools to elucidate stratum retention policies,
• support for automatic parameterization of stratum retention policies to meet user size

complexity or inference precision specifications,
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• tools to compare two columns and extract information about the phylogenetic relationship
between them,

• extensive documentation hosted on ReadTheDocs,
• a comprehensive test suite to ensure stability and reliability,
• convenient availability as a Python package via the PyPI repository, and
• pure Python implementation to ensure universal portability.

Statement of Need
The hstrat software exists to equip parallel and distributed evolution digital systems —
simulations that instantiate the process of evolution in an agent-based framework — with
phylogenetic tracking capabilities. Parallel and distributed computation exponentiates the power
of digital evolution by allowing for larger populations, more generations, more sophisticated
genotype-phenotype mappings, and more robust fitness functions (Channon, 2019; Harding
& Banzhaf, 2007; Langdon & Banzhaf, 2019; Miikkulainen et al., 2019). Indeed, several
notable projects within the field have successfully exploited massively parallel and distributed
computational resources (Bennett III et al., 1999; Blondeau et al., 2009; Sims, 1994). Further
development of methodology and software such as this work will position the field to continue
leveraging ongoing advances in computing hardware.

The capability to detect phylogenetic cues within digital evolution has become increasingly
necessary in both applied and scientific contexts. These cues unlock post hoc insight into
evolutionary history — particularly with respect to ecology and selection pressure — but also
can be harnessed to drive digital evolution algorithms as they unfold (Burke et al., 2003;
Murphy & Ryan, 2008). However, parallel and distributed evaluation complicates, among
other concerns, maintenance of an evolutionary record. Existing phylogenetic record keeping
requires inerrant and complete collation of birth and death reports within a centralized data
structure. Such perfect tracking approaches are brittle to data loss or corruption and impose
communication overhead.

Hereditary stratigraphy methodology, and the implementing hstrat software library, meets
the demand for efficient, tractable, and robust phylogenetic inference at scale. This approach
exchanges a centralized perfect record of history for a process where history is estimated from
comparison of available extant genomes, aligning with the paradigm of phylogenetic inference
in wet biology.

Although targeted to digital evolution use cases, impact of our work extends beyond to the
various applications of digital evolution. Evolutionary biology poses uniquely abstract, nuanced,
and nebulous questions, such as the origins of life and the evolution of complexity (McShea
& Simpson, 2011; Pross, 2016). Computational modeling provides one foothold for such
inquiry, particularly with respect to phenomena that typically unfold on geological timescales
or hypotheses that invoke counterfactuals outside the bounds of physical reality (Clune et
al., 2011; McKinley et al., 2008; O’Neill, 2003). Elsewhere, in the realm of computational
optimization, heuristic algorithms provide a foothold to explore high-dimensional and deceptive
search spaces (Eiben & Smith, 2015). Improvements to distributed phylogenetic tracking
can benefit both of these niches, providing means to test more sophisticated evolutionary
hypotheses and means to discover better solutions to hard problems.

In addition to its founding purview within digital evolution, we anticipate hereditary stratigraphy
— and this software implementation — may find applications within other domains of distributed
computing. For example, hereditary stratigraphy could equip a population protocol system with
the capability for on-the-fly estimation of the relationship between descendants of a forking
message chain or a forking process tree (Angluin et al., 2006; Aspnes & Ruppert, 2009).

Across all these domains, free availability of the hstrat software will play a central role in
bringing hereditary stratigraphy methodology into practice. Library development incorporates
intentional design choices to promote successful outside use, including
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• modular, hierarchical, well-named, and consistent API,
• comprehensive and application-oriented documentation,
• “batteries included” provision of many stratum retention policy options covering a wide

variety of use cases,
• declarative configuration interfaces (i.e., automatic parameterization), and
• emphasis on user extensibility without modification of core library code.

Projects Using the Software
A pre-release version of this software was used to perform experiments, validate derivations, and
create visualizations for the conference article introducing the method of hereditary stratigraphy
(Moreno et al., 2022).

A native version of this software is being incorporated into the next version of DISHTINY, a
digital framework for studying evolution of multicellularity (Moreno et al., 2021; Moreno &
Ofria, 2022). We also anticipate making this software available through the Modular Agent
Based Evolution framework as a community-contributed component (Bohm et al., 2019).

Related Software
To our knowledge, no existing software is available to facilitate phylogenetic analyses of
fully-distributed digital evolution populations. Centralized phylogenetic tracking, however, is
a common practice in digital evolution systems. Many rely on custom “hand-rolled” solu-
tions. However, several general-purpose libraries and frameworks exist to facilitate centralized
phylogenetic tracking. These include,

• Automated Phylogeny Over Geological Timescales (APOGeT) (Godin-Dubois et al.,
2019),

• Distributed Evolutionary Algorithms in Python (DEAP) (De Rainville et al., 2012),
• Empirical (Ofria et al., 2020), and
• Modular Agent-Based Evolution Framework (MABE) (Bohm et al., 2017).

Empirical, MABE, and APOGeT are C++ libraries. DEAP, eponymously, is a Python library.

Empirical and MABE’s phylogenetic tracking tools cater to asexual lineages, while DEAP
and APOGeT focus on sexual lineages. Both MABE and Empirical incorporate options for
on-the-fly pruning, where records for extinct lineages are deleted in order to temper memory use.
APOGeT focuses on species-level tracking rather than individual-level genealogical tracking.

Note that the DEAP’s distributing computing features are organized around a centralized
controller-worker model. Phylogenetic tracking takes place on the controller process. If any
selection and reproduction takes place on worker processes (i.e., island model), migration is
managed by the controller process. In this scenario, any phylogenetic tracking requires all
phylogenetic history occuring on islands in between migrations to be reported back to the
controller process.

In prepublication work, we performed phylogenetic inference using fixed-length bitstring com-
ponents of digital genomes subjected to bitwise mutation. (This work motivated development
of the more efficient and robust hereditary stratigraph annotation scheme.) A huge number
of biology-oriented phylogenetic reconstruction tools have been developed, but we found the
design of BioPython’s Phylo module particularly well suited to non-DNA data (Cock et al.,
2009).

Future Work
The hstrat project remains under active development.
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A major next objective for the hstrat project will be development of a header-only C++ library
to complement the Python library presented here. This implementation will improve memory
and CPU efficiency as well as better integrating with many scientific computing or embedded
systems applications, which often employ native code to meet performance requirements.

This direction opens the possibility of adding support for other high-level languages in the
future (Beazley, 2003). Indeed, at a minimum, we plan to update the Python library to include
support for wrapping these native components (Jakob et al., 2017). However, the pure Python
implementation will remain as a fallback for platforms lacking native support.

As released in version 1.0.1, the hstrat library contains a comprehensive set of tools to perform
pairwise comparisons between extant hereditary stratigraphic columns. However, a key use case
for the library will be phylogenetic reconstruction over entire populations. We plan to expand
the library to add tools for population-level phylogenetic reconstruction and visualization in
future releases.

Although, as currently released, hstrat does support serialization and de-serialization via
Python’s pickle protocol, which suffices for data storage and transfer within and between
Python contexts, human-readable and binary serialization formats intercompatible outside of
Python will be crucial.
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