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Summary
EnsembleKalmanProcesses.jl is a Julia-based toolbox that can be used for a broad class of
black-box gradient-free optimization problems. Specifically, the tools enable the optimization,
or calibration, of parameters within a computer model in order to best match user-defined
outputs of the model with available observed data (Kennedy & O’Hagan, 2001). Some of the
tools can also approximately quantify parametric uncertainty (Huang, Huang, et al., 2022).
Though the package is written in Julia (Bezanson et al., 2017), a read–write TOML-file
interface is provided so that the tools can be applied to computer models implemented in any
language. Furthermore, the calibration tools are non-intrusive, relying only on the ability of
users to compute an output of their model given a parameter value.

As the package name suggests, the tools are inspired by the well-established class of ensemble
Kalman methods. Ensemble Kalman filters are currently one of the only practical ways to
assimilate large volumes of observational data into models for operational weather forecasting
(Evensen, 1994; Houtekamer & Mitchell, 1998, 2001). In the data assimilation setting, a
computational weather model is integrated for a short time over a collection, or ensemble,
of initial conditions, and the ensemble is updated frequently by a variety of atmospheric
observations, allowing the forecasts to keep track of the real system.

The workflow is similar for ensemble Kalman processes. Here, a computer code is run (in
parallel) for an ensemble of different values of the parameters that require calibration, producing
an ensemble of outputs. This ensemble of outputs is then compared to observed data, and
the parameters are updated to a new set of values which reduce the output–data misfit. The
process is iterated until a user-defined criterion of convergence is met. Optimality of the update
is guaranteed for linear models and Gaussian uncertainties, but good performance is observed
outside of these settings, see Schillings & Stuart (2017). Optimal values are selected from
statistics of the final ensemble.

Statement of need
The task of estimating parameters of a computer model or simulator such that its outputs
fit with data is ubiquitous in science and engineering, coming under many names such as
calibration, inverse problems, and parameter estimation. In statistics and machine learning,
when closed-form estimators of parameters of a model are unavailable, similar approaches may
need to be employed to fit the model to data. There is a wide variety of algorithms to suit
these applications; however, there are many bottlenecks in the practical application of such
methods to computer codes:
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• Legacy codes: Often code is old, and written in different languages than the packages
implementing the calibration algorithms, requiring elaborate interfaces.

• Complex codes: Often large complex codes are difficult to change, so application of
intrusive calibration tools to models can be challenging.

• Derivatives: When derivatives of a model output can be taken with respect to parameters,
they can often improve the rate of convergence. But in many practical cases, these
parameter-to-output maps are not differentiable; they may be chaotic or stochastic. Here
one should not – or cannot – apply gradient-based methods.

• Lack of parallelism: There is now widespread access to high-performance computing
clusters, cloud computing, and local multi-threading, and such facilities should be
exploited where possible.

EnsembleKalmanProcesses.jl aims to provide a flexible and comprehensive solution to address
these challenges:

1. It is embarrassingly parallel with respect to the ensemble; therefore, all computer model
evaluations within an ensemble can happen simultaneously within an iteration.

2. It is derivative-free, and so is appropriate for computer codes for which derivatives are
not available. The optimal updates are robust to noise.

3. It is non-intrusive and so can be applied to black-box computer codes written in any
language or style, or to computer models for which the source code is not available to
the user.

4. With scalability enhancements, such as the ones provided by the Localizer structure, it
can be applied to high-dimensional problems.

State of the field
Many gradient-based optimizers have been implemented in Julia, collected in Optim.jl (Mo-
gensen & Riseth, 2018) and JuliaSmoothOptimizers.jl, for example. Some gradient-free
optimization tools, better suited for non-deterministic or noisy optimization, are collected
within packages such as BlackBoxOptim.jl and Metaheuristics.jl (Mejía-de-Dios & Mezura-
Montes, 2022). Although these packages feature a number of ensemble-based approaches,
none utilize Kalman-based statistical updates, and instead rely on heuristic algorithms inspired
from biological processes such as natural selection (Genetic Algorithms) or swarming (Particle
Swarm Optimization). A related class of methods to calibrate black-box computer codes are
based on Bayesian inference, such as (Markov Chain) Monte Carlo, implemented in Turing.jl

(Ge et al., 2018), for example. Such methods provide the posterior distribution of parameters,
from which the optimum is taken as the summary statistic. However, they are far more
computationally expensive.

EnsembleKalmanProcesses.jl fills the need for computationally inexpensive, gradient-free,
mathematically-grounded, ensemble-based calibration algorithms. Ensemble Kalman processes
are provably optimal in simple settings, and have a large literature of extensions to complex
problems. Although implementations of Kalman filters exist in Julia (EnKF.jl; Kalman.jl;
GaussianFilters.jl), EnsembleKalmanProcesses.jl is the only package to implement
ensemble-based updates for parameter estimation; other packages focus on state estimation
from sequential data.

Features
There are different ensemble Kalman algorithms in the literature, which differ in the way that
the ensemble update is performed. The following ensemble Kalman processes are implemented
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tools in our package, and we provide published references for detailed descriptions and evidence
of their efficacy:

• Ensemble Kalman Inversion (EKI, Iglesias et al. (2013)),

• Ensemble Kalman Sampler (EKS, Garbuno-Inigo, Hoffmann, et al. (2020); Garbuno-Inigo,
Nüsken, et al. (2020)),

• Unscented Kalman Inversion (UKI, Huang, Schneider, et al. (2022)),

• Sparse Ensemble Kalman Inversion (SEKI, Schneider, Stuart, et al. (2022)).

The package also implements some features to improve robustness and flexibility of the
ensemble algorithms:

• The ParameterDistribution structure allows users to perform calibrations for parameters
with known constraints. It does so by defining transformation maps under-the-hood from
the constrained space to an unconstrained space where the optimization problem can be
suitably defined. Constrained optimization using this framework has been successfully
demonstrated in a variety of settings (Dunbar et al., 2022; Lopez-Gomez et al., 2022;
Schneider, Dunbar, et al., 2022).

• The FailureHandler structure allows calibrations to continue when several ensemble
members fail. Common reasons for failure could be, for instance, simulation blow-up for
certain parameter configurations, user termination of slow computations, data corruption,
or bad nodes in a high-performance computing facility. This methodology is demonstrated
in Lopez-Gomez et al. (2022).

• The Localizer structure allows users to overcome the restriction of the solution of the
calibration to the linear span of the initial ensemble, and to reduce sampling errors
due to the finite size of the ensemble. Various such localization and sampling error
correction methods are implemented in EnsembleKalmanProcesses.jl (Lee, 2021; Tong
& Morzfeld, 2022).

• The TOML-file interface defined in the TOMLInterface module allows non-intrusive use
of EnsembleKalmanProcesses.jl through TOML files, which are widely used for config-
uration files and easily read in any programming language. Given the computer model
to calibrate and prior distributions on the parameters, EnsembleKalmanProcesses.jl
reads these distributions from a file and, after an iteration of the ensemble Kalman
algorithm, writes each member of the updated ensemble to a parameter file. Each
of these parameter files can be then read individually to initiate the ensemble of the
computer model for the next iteration.

Pedagogical example
In this example, the computer code simulates a sine curve

𝑓(𝐴, 𝑣) = 𝐴 sin(𝑡 + 𝜑) + 𝑣, ∀𝑡 ∈ [0, 2𝜋],

with a random phase shift 𝜑 applied to every evaluation. We define the observable map

𝐺(𝐴, 𝑣) = [max 𝑓(𝐴, 𝑣) −min 𝑓(𝐴, 𝑣),mean𝑓(𝐴, 𝑣)].

We treat 𝜑 as a “nuisance parameter” that we are not interested in estimating, thus the
observable map 𝐺(𝐴, 𝑣) is chosen independent of 𝜑. We are given one sample measurement
of 𝐺, polluted by Gaussian noise 𝒩(0, Γ), and call this 𝑦. Our task is to deduce the most
likely amplitude 𝐴 and vertical shift 𝑣 of the curve that produced the sample 𝑦.

We encode information into prior distributions over the parameters:
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# A is positive, has likely value 2 with standard deviation 1

# v has likely value 0 with standard deviation 5

prior_A = constrained_gaussian(”amplitude”, 2, 1, 0, Inf)

prior_v = constrained_gaussian(”vert_shift”, 0, 5, -Inf, Inf)

prior = combine_distributions([prior_A, prior_v])

To use a basic ensemble method we need to specify the size of the ensemble, which we take to
be N_ensemble = 5. We now initialize the problem, by drawing the initial ensemble from the
prior and selecting the Inversion() tool to perform ensemble Kalman inversion:

initial_ensemble = construct_initial_ensemble(prior, N_ensemble)

ensemble_kalman_inversion =

EnsembleKalmanProcess(initial_ensemble, y, Γ, Inversion())

Then we run the algorithm iteratively. In this case, we choose to perform 5 iterations:

N_iterations = 5

for i in 1:N_iterations`

# get the latest parameter ensemble

params_i = get_phi_final(prior, ensemble_kalman_process)

# run a simulation for each parameter in the ensemble

G_ens = hcat([G(params_i[:, i]) for i in 1:N_ensemble]...)

# perform the Kalman update, producing a new ensemble

update_ensemble!(ensemble_kalman_process, G_ens)

end

The initial and final ensembles are shown in Figure 1, by evaluating 𝑓 at these parameters.
We observe that the final sinusoid ensemble has greatly reduced the error in amplitude and
vertical shift, despite the presence of the random phase shifts.

Figure 1: Sinusoids produced from the initial and final ensembles, and the sine curve that generated the
data (Truth).

This final ensemble determines the problem solution; for ensemble Kalman inversion, a best
estimate of the parameters is taken as the mean of the final ensemble:

best_parameter_estimate = get_phi_mean_final(prior, ensemble_kalman_process)

The Julia code and further explanation of this example is provided in the documentation.
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Research projects using the package
• EnsembleKalmanProcesses.jl has been used to train physics-based and machine-learning

models of atmospheric turbulence and convection, implemented using Flux.jl and
TurbulenceConvection.jl (Lopez-Gomez et al., 2022). In this application, the available
model outputs are not differentiable with respect to the learnable parameters, so gradient-
based optimization was not an option. In addition, the unscented Kalman inversion
algorithm was used to approximately quantify parameter uncertainty.

• EnsembleKalmanProcesses.jl features within Calibrate-Emulate-Sample (CES, Cleary
et al. (2021)), a pipeline used to accelerate parameter uncertainty quantification (by a
factor of 103 - 104 with respect to Monte Carlo methods) by using statistical emulators.
EnsembleKalmanProcesses.jl is used to choose training points for these emulators.
The training points are naturally concentrated by the ensemble Kalman processes into
areas of high posterior probability mass. Within CES, the trained emulators are used to
sample this probability distribution, and by design are most accurate where they need to
be. CES has been successfully used to quantify parameter uncertainty within the moist
convection scheme of a simplified climate model (Dunbar et al., 2021, 2022; Howland et
al., 2022), within a droplet collision-coalescence scheme for cloud microphyiscs (Bieli et
al., 2022), and within boundary layer turbulence schemes for ocean modeling (Hillier,
2022).

• EnsembleKalmanProcesses.jl has been used to learn hyperparameters within a machine
learning tool known as Random Features within the Julia package RandomFeatures.jl.
Here, the hyperparameters characterize an infinite family of functions, from which a
finite sample is drawn to use as a basis in regression problems. The objective for learning
the parameters is noisy and non-differentiable due to the random sampling, so ensemble
Kalman processes naturally perform well in this setting.
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