
guitarsounds: A Python package to visualize harmonic
sounds for musical instrument design
Olivier Chabot 1 and Louis Brillon1

1 École de lutherie Bruand, Montréal, QC, Canada
DOI: 10.21105/joss.04878

Software
• Review
• Repository
• Archive

Editor: Brian McFee
Reviewers:

• @cwitkowitz
• @ebezzam

Submitted: 16 September 2022
Published: 09 February 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
The guitarsounds Python package can be used to efficiently visualize relevant features of
harmonic sounds and is mainly developed to compare musical instrument design iterations.
guitarsounds is wrapped around the implementation of common signal processing features,
which are mainly taken from numpy (Harris et al., 2020) and scipy (Virtanen et al., 2020).
The signal processing features are augmented to perform the comparative analysis of transient
harmonic sounds. Such sounds are defined as having a clear onset, and a frequency-amplitude
distribution clearly concentrated around partials. Consequently, while the package is named
guitarsounds, its analysis framework can be used with any harmonic sound, such as those
produced by a piano, or a percussion instrument.

The guitarsounds package is divided in two main components. First, the package is developed
around a convenient object-oriented Application Programming Interface (API) that can be
used to extract features from sounds and visualize them according to the user’s needs. Then,
a graphical user interface (GUI) makes most of the features of guitarsounds available to
users less knowledgeable in programming. guitarsounds is meant to be used with the Jupyter
Notebook interface to allow interactively exploring the sound data, either with the API or the
GUI.

The main features of guitarsounds are to:

• Automate the loading, conditioning and normalization of multiple sound files to mean-
ingfully compare their features.

• Visualize sounds features relevant to musical instrument design, such as:
– Linear and logarithmic time envelope
– Octave bands Fourier transform
– Time-dependent damping

• Divide sounds in frequency bands to analyze variations in temporal behaviour for different
frequency ranges.

• Extract the Fourier transform peaks of a harmonic signal using a custom peak finding
algorithm.

• Extract numerical values for certain features such as the Helmholtz cavity frequency of a
guitar.

• Provide an easy-to-use signal processing API to compute new features meeting specific
needs by providing access to lower level features and handling the differences between
sound files, such as the file sample rate.

Specifically, the API provides four classes nested together:

• Plot: Provides low level plotting of specific features, such as plotting the Fast Fourier
Transform (FFT) of a sound file.

• Signal: Stores the data of an array corresponding to a single signal. For example, if
a sound file is read and filtered, the array resulting from the filtering operation will be

Chabot, & Brillon. (2023). guitarsounds: A Python package to visualize harmonic sounds for musical instrument design. Journal of Open Source
Software, 8(82), 4878. https://doi.org/10.21105/joss.04878.

1

https://orcid.org/0000-0003-3294-2812
https://doi.org/10.21105/joss.04878
https://github.com/openjournals/joss-reviews/issues/4878
https://github.com/olivecha/guitarsounds
https://doi.org/10.5281/zenodo.7622901
https://brianmcfee.net
https://orcid.org/0000-0001-6261-9747
https://github.com/cwitkowitz
https://github.com/ebezzam
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04878

stored in a new instance of the Signal class. An instance of the Plot class is constructed
for each Signal class instance and stored as an attribute of the Signal class. The
Signal class contains all the features relying only on the data of a single sound signal,
such as the computation of the envelope.

• Sound: Stores all the information corresponding to a single sound file. When a .wav

file is read using guitarsounds, all the processing is handled by the Sound class, such
as truncating, filtering, or normalizing the sound signal. The Sound class provides the
features relying on more than one Signal instance, but still using the information from
a single sound file, such as the power distribution of a sound across different frequency
bands.

• SoundPack: Contains multiple Sound class instances and provides the features used to
compare the data between different sound files. The SoundPack methods are divided
between methods developed to compare two sounds and methods developed to compare
an arbitrary amount of sounds. As an example, the method plotting the FFT of two
sounds in a mirror configuration can only be called if the SoundPack was constructed
using exactly two sounds, whereas the method showing a table of the different sound
fundamental frequencies can be called for a SoundPack instance created using an arbitrary
number of Sounds.

To illustrate the use of guitarsounds, the log-time envelope, a feature representing the
amplitude of a sound with a higher definition in time at the start of the sound, can be
computed using guitarsounds. By plotting this feature for the same note played on two
instruments, the dynamic response of the instruments can be compared for a specific excitation
frequency. A code snippet comparing the log-time envelope of two sounds is presented below
with the associated output in Figure 1. In the following code, the SoundPack object is first
instantiated from the specified sound files. For each file, a Sound class instance is created and
conditioned. In the conditioning procedure, the signal is first resampled to have a sample rate
equal to 22050 Hz. This is important to ensure all the features compared between sounds are
computed using the same sample rate. The sound is then trimmed so that the beginning of
the onset is at 100 ms, as can be seen on Figure 1. To ensure compared sounds have the
same length, the ends of the sounds are trimmed so that each sound has the same number
of samples as the shortest sound. The guitarsounds package relies on matplotlib (Hunter,
2007) for all its vizualisation features. Thus, users familiar with matplotlib objects can tune
the figures created by guitarsounds to their needs.

import guitarsounds

import matplotlib.pyplot as plt

Use guitarsound to compare the log-time envelope of two sounds

soundfile1 = "example_sounds/Wood_Guitar/Wood_A5.wav"

soundfile2 = "example_sounds/Carbon_Guitar/Carbon_A5.wav"

Specify names to be used in the legend of the plot

mysounds = guitarsounds.SoundPack(soundfile1, soundfile2, names=["wood", "carbon"])

mysounds.plot("log envelop")

Access the matplotlib Figure and Axes objects created by guitarsounds

plt.gca().set_title("My sound comparison") # To change the title

plt.gcd().savefig("log_envelope_compare") # To save the figure

Chabot, & Brillon. (2023). guitarsounds: A Python package to visualize harmonic sounds for musical instrument design. Journal of Open Source
Software, 8(82), 4878. https://doi.org/10.21105/joss.04878.

2

https://doi.org/10.21105/joss.04878

Figure 1: Output of the code snippet comparing the log-time envelope of two sounds.

Statement of need
guitarsounds was developed to meet the needs of the Bruand lutherie school, more precisely
as a tool to visualize and compare the sounds of different guitar designs using custom sound fea-
tures. The guitarsounds package was used in previous academic work (in press) to investigate
the difference between two guitars both designed using an innovative numerical prototyping
method based on topological optimization. In the scope of this research, guitarsounds allowed
the measurement of specific sound features such as the slope of the peaks in the signal Fourier
transform, computed using a linear regression. This feature is related to the instrument’s tone
(Sumi & Ono, 2008), and was used to study the differences between the two guitar designs.
guitarsounds is also used in ongoing research at the Bruand lutherie school to manage sound
data in a project where guitar sounds are generated with random values for specific features,
to provide data for a psycho-acoustic study. The guitarsounds API is also used to give an
introduction to programming for data analysis to the school’s students and in the teaching
activities, as a tool to visualize the physical phenomena involved in the sounds produced by
guitars, such as the Helmholtz cavity frequency of an instrument. The GUI was included in
the package as knowledge or interest in programming isn’t expected in the luthier’s training.
A screen capture of the GUI is shown in Figure 2.

The features of guitarsounds differ from those of existing packages in their ability to be
both used alone to produce decent figures with a minimal number of lines of code and as
a tool in a Python data visualization stack where the sound specific needs can be handled
by guitarsounds. There exists an overlap between guitarsounds and the librosa (McFee
et al., 2015) Python package for music analysis; however, librosa is not a dependency of
guitarsounds, and the latter is more focused on feature extraction for machine learning
applications and lacks features tailored to harmonic sound analysis and integrated comparison
of sounds. The librosa package is also aimed at an audience with a more developed knowledge

Chabot, & Brillon. (2023). guitarsounds: A Python package to visualize harmonic sounds for musical instrument design. Journal of Open Source
Software, 8(82), 4878. https://doi.org/10.21105/joss.04878.

3

https://doi.org/10.21105/joss.04878

of Python programming.

Figure 2: Graphical user interface in the Jupyter Notebook environment.

References
Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D.,

Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M., Peterson, P., … Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science &
Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55

McFee, B., Raffel, C., Liang, D., Ellis, D., McVicar, M., Battenberg, E., & Nieto, O. (2015).
Librosa: Audio and music signal analysis in Python. 18–24. https://doi.org/10.25080/
Majora-7b98e3ed-003

Sumi, T., & Ono, T. (2008). Classical guitar top board design by finite element method modal
analysis based on acoustic measurements of guitars of different quality. Acoustical Science
and Technology, 29(6), 381–383. https://doi.org/10.1250/ast.29.381

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., Walt, S. J. van der, Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E.,
… Mulbregt, P. van. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in
Python. Nature Methods, 17 (3), 261–272. https://doi.org/10.1038/s41592-019-0686-2

Chabot, & Brillon. (2023). guitarsounds: A Python package to visualize harmonic sounds for musical instrument design. Journal of Open Source
Software, 8(82), 4878. https://doi.org/10.21105/joss.04878.

4

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.25080/Majora-7b98e3ed-003
https://doi.org/10.25080/Majora-7b98e3ed-003
https://doi.org/10.1250/ast.29.381
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.21105/joss.04878

	Summary
	Statement of need
	References

