
kep_solver: A Python package for kidney exchange
programme exploration
William Pettersson 1

1 School of Computing Science, University of Glasgow, United Kingdom
DOI: 10.21105/joss.04881

Software
• Review
• Repository
• Archive

Editor: Jacob Schreiber
Reviewers:

• @arianesasso
• @igarizio

Submitted: 22 September 2022
Published: 01 December 2022

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Kidney disease is one of the top ten leading causes of death globally (WHO Global Health
Estimates, 2019), and unfortunately has no known cure. Instead, late-stage kidney disease
is treated with either dialysis or a donated kidney transplant. Of these, a kidney transplant
is cheaper, and offers both a better quality of life and a longer life expectancy (Axelrod et
al., 2018). Such donor kidneys can come from either living or deceased donors, with living
donor transplants resulting in better outcomes for the recipient (Hart et al., 2017; Wolfe et al.,
2010). However finding a living donor who is both willing to donate and medically compatible
can be difficult.

Kidney exchange programmes (KEPs) greatly increase the rate of living donor kidney transplants
by alleviating the requirement that a willing donor must be medically compatible with their
chosen recipient. Instead, recipients still pair with at least one willing donor, but transplants
are organised such a donor donates a kidney to a recipient if and only if their paired recipient
receives a kidney. In particular, a donor will often not donate to their paired recipient.

The question that arises is then: given a number of recipients, along with their paired donors,
which transplants should be selected to go ahead? This is one of the problems that KEPs solve.
Commonly, this is solved by first building a compatibility graph: a graph that represents all the
donor-and-recipient pairs as well as arcs indicating that there is a potential for a transplant
from a donor to a recipient. Then a set of vertex-disjoint cycles are selected through an integer
programme according to some pre-determined criteria (e.g. maximising number of transplants,
maximising transplants to hard-to-match recipients). These selected cycles correspond to sets
of transplants that have been selected to proceed, and will undergo further checks for medical
compatibility and transplant procedures.

Statement of need
Almost all research-based software for kidney exchange that has been published has been
written from scratch for one particular paper but without re-use in mind (including projects
from this author). See for instance:

• Delorme, García, Gondzio, Kalcsics, Manlove, & Pettersson (2022) Code
• Delorme, García, Gondzio, Kalcsics, Manlove, Pettersson, & Trimble (2022) Code
• Toulis & Parkes (2015) Code
• Dickerson et al. (2014) Code

Such papers, however, form the minority as many papers in the field don’t even publish their
code. This has unnecessarily increased the workload for researchers, and also increases potential
for inaccurate results due to coding errors. kep_solver reduces or completely removes this
burden from researchers by providing a framework that can be built upon. This framework is
useful for a wide variety of research goals, including:

Pettersson. (2022). kep_solver: A Python package for kidney exchange programme exploration. Journal of Open Source Software, 7(80), 4881.
https://doi.org/10.21105/joss.04881.

1

https://orcid.org/0000-0003-0040-2088
https://doi.org/10.21105/joss.04881
https://github.com/openjournals/joss-reviews/issues/4881
https://gitlab.com/wpettersson/kep_solver
https://doi.org/10.5281/zenodo.7369472
https://jmschrei.github.io/
https://orcid.org/0000-0003-4230-6625
https://github.com/arianesasso
https://github.com/igarizio
https://creativecommons.org/licenses/by/4.0/
https://github.com/mdelorme2/Hierarchical_Optimisation_Kidney_Exchange_Programmes_Codes/
https://github.com/jamestrimble/kidney_solver
https://github.com/ptoulis/kidney-exchange
https://github.com/JohnDickerson/KidneyExchange
https://doi.org/10.21105/joss.04881


• Improved algorithms and models for finding solutions,
• Improved outcomes by adapting or changing the goals, targets, and parameters of the

KEP, and
• Improved simulation of programmes by better statistical analyses of real-world kidney

exchange programme populations.

By providing a stable and standard framework that is easy to use and build upon, kep_solver
will also accumulate the latest innovations in kidney exchange programmes, ensuring not
only that researchers can easily implement their own improvements, but also compare said
improvements to the state-of-the-art in the field.

Functionality
kep_solver includes code for all components required to form the basis of a real-world kidney
exchange programme. It includes code that handles file input/output for the currently-public
formats, which are also documented in kep_solvers own documentation. It manages donors,
recipients, and transplants, including ensuring that properties such as blood groups and cPRA
are valid upon entry. It can construct and analyse the compatibility graphs that map the
potential transplants between donors and recipients, including enumeration of all potential
cycles and chains. It contains a number of different optimisation criteria that can be configured
in arbitrary hierarchies. It includes a cycle-and-chain integer programming model for finding
an optimal set of transplants according to a configured hierarchy of criteria, and solves said
model via PuLP. It can also create a number of different random entity generators, ranging
from blood group generators to complete instance generators. Each such generator can be
configured with an appropriate distribution based on examination of real-world instances.

Sample usage
The simplest usage of kep_solver is to run a single instance through a simple kidney exchange
programme, so we demonstrate that now.

from kep_solver.fileio import read_json

from kep_solver.pool import Pool

from kep_solver.model import TransplantCount

instance = read_json(”input.json”)

pool = Pool([TransplantCount()],

description=”My first KEP Pool”,

maxCycleLength=3,

maxChainLength=2)

solution, model = pool.solve_single(instance)

num_transplants = sum(len(modelled.exchange) for modelled in solution.selected)

print(f”A total of {len(solution.selected)} exchanges were found”)

print(f”These represent {num_transplants} transplants”)

The first three lines simply import the necessary portions of kep_solver. We then read an
instance from a file, create a pool with one optimisation objective (TransplantCount()), solve
the single given instance and print out how many transplants are selected.

Acknowledgements
This software has been supported by the Engineering and Physical Sciences Research Council
(EPSRC) grant EP/T004878/1 (Multilayer Algorithmics to Leverage Graph Structure).

Pettersson. (2022). kep_solver: A Python package for kidney exchange programme exploration. Journal of Open Source Software, 7(80), 4881.
https://doi.org/10.21105/joss.04881.

2

https://github.com/coin-or/pulp
https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/T004878/1
https://doi.org/10.21105/joss.04881


References
Axelrod, D. A., Schnitzler, M. A., Xiao, H., Irish, W., Tuttle-Newhall, E., Chang, S.-H., Kasiske,

B. L., Alhamad, T., & Lentine, K. L. (2018). An economic asssessment of contemporary
kidney transplant practice. Americal Journal of Transplantation, 18, 1168–1176. https:
//doi.org/10.1111/ajt.14702

Delorme, M., García, S., Gondzio, J., Kalcsics, J., Manlove, D., & Pettersson, W. (2022).
New algorithms for hierarchical optimisation in kidney exchange programmes. Operations
Research (Accepted, to Appear).

Delorme, M., García, S., Gondzio, J., Kalcsics, J., Manlove, D., Pettersson, W., & Trimble,
J. (2022). Improved instance generation for kidney exchange programmes. Computers &
Operations Research, 141, 105707. https://doi.org/10.1016/j.cor.2022.105707

Dickerson, J. P., Procaccia, A. D., & Sandholm, T. (2014). Price of fairness in kidney exchange.
Transplantation, 98, 815. https://doi.org/10.1097/00007890-201407151-02779

Hart, A., Smith, J. M., Skeans, M. A., Gustafson, S. K., Stewart, D. E., Cherikh, W. S.,
Wainright, J. L., Kucheryavaya, A., Woodbury, M., Snyder, J. J., Kasiske, B. L., & Israni,
A. K. (2017). OPTN/SRTR 2015 annual data report: kidney. American Journal of
Transplantation, 17, 21–116. https://doi.org/10.1111/ajt.14124

Toulis, P., & Parkes, D. C. (2015). Design and analysis of multi-hospital kidney exchange
mechanisms using random graphs. Games and Economic Behavior, 91, 360–382. https:
//doi.org/10.1016/j.geb.2015.01.001

WHO Global Health Estimates. (2019). https://www.who.int/data/global-health-estimates

Wolfe, R. A., Roys, E. C., & Merion, R. M. (2010). Trends in organ donation and transplantation
in the United States, 1999–2008. American Journal of Transplantation, 10, 961–972.
https://doi.org/10.1111/j.1600-6143.2010.03021.x

Pettersson. (2022). kep_solver: A Python package for kidney exchange programme exploration. Journal of Open Source Software, 7(80), 4881.
https://doi.org/10.21105/joss.04881.

3

https://doi.org/10.1111/ajt.14702
https://doi.org/10.1111/ajt.14702
https://doi.org/10.1016/j.cor.2022.105707
https://doi.org/10.1097/00007890-201407151-02779
https://doi.org/10.1111/ajt.14124
https://doi.org/10.1016/j.geb.2015.01.001
https://doi.org/10.1016/j.geb.2015.01.001
https://www.who.int/data/global-health-estimates
https://doi.org/10.1111/j.1600-6143.2010.03021.x
https://doi.org/10.21105/joss.04881

	Summary
	Statement of need
	Functionality
	Sample usage
	Acknowledgements
	References

