
OpenMSIStream: A Python package for facilitating
integration of streaming data in diverse laboratory
environments
Margaret Eminizer 1¶, Sam Tabrisky2,3,4, Amir Sharifzadeh 1, Christopher
DiMarco 4, Jacob M. Diamond 4,6, K. T. Ramesh 4, Todd C.
Hufnagel 4,5,6, Tyrel M. McQueen 4,5,7,8, and David Elbert 1,4

1 Institute for Data Intensive Engineering and Science (IDIES), The Johns Hopkins University, USA 2
Department of Biology, Dartmouth College, USA 3 Department of Computer Science, Dartmouth
College, USA 4 Hopkins Extreme Materials Institute (HEMI), The Johns Hopkins University, USA 5
Department of Materials Science and Engineering, The Johns Hopkins University, USA 6 Department of
Mechanical Engineering, The Johns Hopkins University, USA 7 Department of Chemistry, The Johns
Hopkins University, USA 8 Institute for Quantum Matter (IQM), William H. Miller III Department of
Physics and Astronomy, The Johns Hopkins University, USA ¶ Corresponding author

DOI: 10.21105/joss.04896

Software
• Review
• Repository
• Archive

Editor: Amy Roberts
Reviewers:

• @lucask07
• @SergeyYakubov

Submitted: 07 October 2022
Published: 09 March 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
OpenMSIStream provides seamless connection of scientific data stores with streaming infra-
structure to allow researchers to leverage the power of decoupled, real-time data streaming
architectures. Data streaming is the process of transmitting, ingesting, and processing data
continuously rather than in batches. Access to streaming data has revolutionized many indus-
tries in the past decade and created entirely new standards of practice and types of analytics.
While not yet commonly used in scientific research, data streaming has the potential to become
a key technology to drive rapid advances in scientific data collection (e.g., Brookhaven National
Lab (2022)). This paucity of streaming infrastructures linking complex scientific systems is
due to a lack of tools that facilitate streaming in the diverse and distributed systems common
in modern research. OpenMSIStream closes this gap between underlying streaming systems
and common scientific infrastructure. Closing this gap empowers novel streaming applications
for scientific data including automation of data curation, reduction, and analysis; real-time
experiment monitoring and control; and flexible deployment of AI/ML to guide autonomous
research.

Streaming data generally refers to data continuously generated from multiple sources and
passed in small packets (termed messages). Streaming data messages are typically organized
in groups called topics and persist for periods of time conducive to processing for multiple
uses either sequentially or in small groups. The resulting flows of raw data, metadata, and
processing results form “ecosystems” that automate varied data-driven tasks. A strength of
data streaming ecosystems is the use of publish-subscribe (“pub/sub”) messaging backbones
that decouple data senders (publishers) and recipients (subscribers). Popular message-focused
middleware solutions such as RabbitMQ (VMware, 2022), Apache Pulsar (Apache Software
Foundation, 2022b), and Apache Kafka (Apache Software Foundation, 2022a) all provide
differing capabilities as backbones. OpenMSIStream provides robust and efficient, yet easy,
access to the rich data streaming systems of Apache Kafka.

Eminizer et al. (2023). OpenMSIStream: A Python package for facilitating integration of streaming data in diverse laboratory environments.
Journal of Open Source Software, 8(83), 4896. https://doi.org/10.21105/joss.04896.

1

https://orcid.org/0000-0003-4591-2225
https://orcid.org/0000-0002-4100-4898
https://orcid.org/0000-0002-2267-938X
https://orcid.org/0000-0001-7905-4260
https://orcid.org/0000-0003-2659-4698
https://orcid.org/0000-0002-6373-9377
https://orcid.org/0000-0002-8493-4630
https://orcid.org/0000-0002-2292-180X
https://doi.org/10.21105/joss.04896
https://github.com/openjournals/joss-reviews/issues/4896
https://github.com/openmsi/openmsistream
https://doi.org/10.5281/zenodo.7713196
https://clas.ucdenver.edu/physics/amy-roberts-phd
https://orcid.org/0000-0001-8538-9155
https://github.com/lucask07
https://github.com/SergeyYakubov
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04896


Statement of Need
The majority of scientific research today relies on semi-automated collection, reduction, and
analysis of data. Vast improvements in instrumentation and computational modeling, however,
have rapidly increased the volume and quality of that data, providing an opportunity for
transformative acceleration of science. Such transformation will require scalable integration of
data resources for development and real-time deployment of AI and machine learning, so as to
facilitate pervasive laboratory automation and the development of autonomous decision-making
in research.

OpenMSIStream development was driven by needs in materials science research with its central
goal of discovering novel materials to meet urgent societal needs in fields as diverse as energy,
health, the environment, and security. It provides a tool to accelerate materials research
through the development and integration of data and data platform resources in the Materials
Innovative Infrastructures prioritized by the Materials Genome Initiative (MGI) (U.S. White
House Office of Science and Technology Policy, 2021). Specifically, OpenMSIStream simplifies
the process of standing up streaming systems by abstracting details while still providing full
functionality and configurability. It provides file-oriented tools to align with the prevailing
paradigms of scientific instrumentation and data analysis. The suite of tools manage chunking
of data files of any type to form manageable messages in independently-configured topics.
Records can be read back to reconstruct the original data file contents and trigger flexible
processing code to run as entire files become available from the stream in real time.

The messaging backend for OpenMSIStream is provided by the confluent_kafka Python
wrapper (Confluent, 2022) around Apache Kafka. A Kafka “broker” persistently stores
messages in ordered, append-only logs called “topics”. “Producer” programs send messages to
be appended to topics, while “consumer” programs read messages stored in those topics.

OpenMSIStream producers provide flexibility to upload single files to Kafka topics, and
persistently watch directory trees on file systems for files to upload. OpenMSIStream consumers
can download files uploaded to topics to disk, or transfer files to object stores through S3 API
compliance (Amazon Web Services, 2022). OpenMSIStream also includes base classes that
users can extend to invoke individualized Python code on the contents of reconstructed files
and save processing results locally or produce them as messages to different topics, including
a specific implementation for automated extraction and re-production of metadata keys and
values.

OpenMSIStream programs (or extensions thereof) can be run from the command line, in
Docker containers, or installed to run persistently in the background as Windows Services or
Linux daemons, all using the same simple interface. Producer and consumer programs and
the central Kafka broker exist independently of one another, so they can run on computers
where data are being generated by instruments, on machines hosting data storage, or on more
powerful servers for analysis as necessary. The Kafka backend is fully customizable through a
simple configuration file interface, and data uploaded to topics can optionally be encrypted on
the broker using KafkaCrypto (McQueen, 2022).

OpenMSIStream was designed for deployment in diverse science laboratory environments. Lab
scientist or student users need only minimal computing experience to set up a directory on an
instrument computer to watch for data files and start running another program on a different
computer to automate backups or transfers to local disks or cloud storage solutions. Slightly
more advanced users can adapt their existing analysis codes to automatically perform analyses
in real time and save results locally or send them off to another Kafka topic.

In materials science projects, it is common to see iterative scientific design workflows integrating
contributions from several different labs that focus on material production, simulation, and
characterization. Using data streaming to pass raw data, metadata, and analysis or simulation
results automatically between these groups increases interoperability to tighten the materials
design loop.

Eminizer et al. (2023). OpenMSIStream: A Python package for facilitating integration of streaming data in diverse laboratory environments.
Journal of Open Source Software, 8(83), 4896. https://doi.org/10.21105/joss.04896.

2

https://doi.org/10.21105/joss.04896


OpenMSIStream has been adopted as the streaming solution for the Open Material Semantic
Infrastructure (OpenMSI) within the NSF-sponsored Designing Materials to Revolutionize
and Engineer our Future (DMREF) collaboration at the Hopkins Extreme Materials Institute
(HEMI). OpenMSIStream is also currently used to automate data transfer and analysis between
electron microscopy laboratories at Cornell University and Johns Hopkins University as part
of the NSF-sponsored PARADIM Materials Innovation Platform, and for similar purposes for
X-ray instruments at the Materials Characterization and Processing (MCP) Facility at Johns
Hopkins University. Further, OpenMSIStream will be deployed in the near future as part of
the data streaming solutions for the ARL-sponsored High-Throughput Materials Discovery for
Extreme Conditions (HTMDEC) project, as well as in the Integrated Materials Design and
Processing Applications to Recycled Plastics DMREF project (NSF).

There are many existing open source Python libraries that implement streaming data workflows.
For example, Bytewax (Bytewax, 2022) is a library for managing data flow with streaming
components that can integrate with Kafka, providing an interface to different data sources
and generalized operators at the single-message level. The Bluesky data collection framework
(Brookhaven National Lab, 2022) implements a DataBroker class that can access local and
remote files, registering incremental updates to them as data are collected. Other libraries like
Streamz (Rocklin, 2022) can be used to build components of local streaming architectures
that don’t access or publish data remotely. While OpenMSIStream can integrate with any of
these Python tools, it also fills their common gap by providing full stream processing capability
using a remote broker while remaining lightweight and accessible to laboratory investigators
accustomed to writing Python code to analyze files stored on disk. OpenMSIStream also
interfaces seamlessly with other existing components of scientific software stacks such as NumPy
(Harris et al., 2020), SciPy (Virtanen et al., 2020), and pandas (McKinney, 2010; The pandas
development team, 2020). The use of the Kafka backend allows users even more familiar with
the Kafka ecosystem to take full advantage of non-Python tools like Kafka Streams (Apache
Software Foundation, 2022c) for further data handling outside of OpenMSIStream.

Acknowledgments
The development of OpenMSIStream has been financially supported by NSF Awards #1921959
and #2129051. Tyrel M. McQueen and the development of KafkaCrypto were supported by
the Platform for the Accelerated Realization, Analysis, and Discovery of Interface Materials
(PARADIM), a NSF Materials Innovation Platform, under cooperative agreement #1539918.

References
Amazon Web Services. (2022). Amazon Simple Storage Service. https://aws.amazon.com/s3/

Apache Software Foundation. (2022a). Apache Kafka (Version 3.2). https://kafka.apache.org/

Apache Software Foundation. (2022b). Apache Pulsar (Version 2.10.1). https://pulsar.apache.
org/

Apache Software Foundation. (2022c). Kafka Streams. https://kafka.apache.org/
documentation/streams/

Brookhaven National Lab. (2022). Bluesky — an experiment specification & orchestration
engine. In GitHub repository. GitHub. https://github.com/bluesky/bluesky

Bytewax, Inc. (2022). Bytewax - Python stateful stream processing framework. In GitHub
repository. GitHub. https://github.com/bytewax/bytewax

Confluent, Inc. (2022). Confluent-kafka-python: Confluent’s Kafka Python client. In GitHub
repository. GitHub. https://github.com/confluentinc/confluent-kafka-python

Eminizer et al. (2023). OpenMSIStream: A Python package for facilitating integration of streaming data in diverse laboratory environments.
Journal of Open Source Software, 8(83), 4896. https://doi.org/10.21105/joss.04896.

3

https://aws.amazon.com/s3/
https://kafka.apache.org/
https://pulsar.apache.org/
https://pulsar.apache.org/
https://kafka.apache.org/documentation/streams/
https://kafka.apache.org/documentation/streams/
https://github.com/bluesky/bluesky
https://github.com/bytewax/bytewax
https://github.com/confluentinc/confluent-kafka-python
https://doi.org/10.21105/joss.04896


Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M., Peterson, P., … Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

McKinney, Wes. (2010). Data Structures for Statistical Computing in Python. In Stéfan van
der Walt & Jarrod Millman (Eds.), Proceedings of the 9th Python in Science Conference
(pp. 56–61). https://doi.org/10.25080/Majora-92bf1922-00a

McQueen, T. M. (2022). kafkacrypto: Message layer encryption for Kafka. In GitHub
repository. GitHub. https://github.com/tmcqueen-materials/kafkacrypto

Rocklin, M. (2022). Streamz. In GitHub repository. GitHub. https://github.com/
python-streamz/streamz

The pandas development team. (2020). Pandas-dev/pandas: pandas (latest). Zenodo.
https://doi.org/10.5281/zenodo.3509134

U.S. White House Office of Science and Technology Policy. (2021). Materials
genome initiative strategic plan. https://www.mgi.gov/sites/default/files/documents/
MGI-2021-Strategic-Plan.pdf

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson,
J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … SciPy
1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python. Nature Methods, 17, 261–272. https://doi.org/10.1038/s41592-019-0686-2

VMware, Inc. (2022). RabbitMQ (Version 3.10.7). https://www.rabbitmq.com/

Eminizer et al. (2023). OpenMSIStream: A Python package for facilitating integration of streaming data in diverse laboratory environments.
Journal of Open Source Software, 8(83), 4896. https://doi.org/10.21105/joss.04896.

4

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.25080/Majora-92bf1922-00a
https://github.com/tmcqueen-materials/kafkacrypto
https://github.com/python-streamz/streamz
https://github.com/python-streamz/streamz
https://doi.org/10.5281/zenodo.3509134
https://www.mgi.gov/sites/default/files/documents/MGI-2021-Strategic-Plan.pdf
https://www.mgi.gov/sites/default/files/documents/MGI-2021-Strategic-Plan.pdf
https://doi.org/10.1038/s41592-019-0686-2
https://www.rabbitmq.com/
https://doi.org/10.21105/joss.04896

	Summary
	Statement of Need
	Acknowledgments
	References

