
PyKronecker: A Python Library for the Efficient
Manipulation of Kronecker Products and Related
Structures
Edward Antonian1, Gareth W. Peters2, and Michael Chantler1

1 Heriot-Watt University, United Kingdom 2 University of California Santa Barbara, United States of
America

DOI: 10.21105/joss.04900

Software
• Review
• Repository
• Archive

Editor: Kevin M. Moerman
Reviewers:

• @JulianKarlBauer
• @nicoguaro

Submitted: 07 October 2022
Published: 30 January 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Matrix operators composed of Kronecker products and related objects, such as Kronecker
sums, arise in many areas of applied mathematics including signal processing, semidefinite
programming, and quantum computing (Loan, 2000). As such, a computational toolkit for
manipulating Kronecker-based systems, in a way that is both efficient and idiomatic, has
the potential to aid research in many fields. PyKronecker aims to deliver this in the Python
programming language by providing a simple API that integrates well with the widely-used
NumPy library (Harris et al., 2020), and that supports automatic differentiation and accelerated
computation on GPU/TPU hardware using Jax (Bradbury et al., 2018).

Kronecker products
The Kronecker product of an (𝑛 × 𝑛) matrix A and an (𝑚 ×𝑚) matrix B, denoted A ⊗ B,
is defined by

A ⊗ B = ⎡⎢
⎣

A1,1B … A1,𝑛B
⋮ ⋱ ⋮

A𝑛,1B … A𝑛,𝑛B
⎤⎥
⎦
.

The resultant operator has shape (𝑛𝑚 × 𝑛𝑚) and, as such, can act on vectors of length 𝑛𝑚.
The Kronecker sum of A and B, denoted A ⊕ B can be defined in terms of the Kronecker
product as

A ⊕ B = A ⊗ I𝑚 + I𝑛 ⊗ B,

where I𝑑 is the 𝑑-dimensional identity matrix, resulting in an operator of the same size as
A ⊗ B. By applying these definitions recursively, the Kronecker product or sum of more than
two matrices can also be defined. In general, the Kronecker product/sum of 𝑘 square matrices
{A(𝑖)}𝑘𝑖=1, with shapes {𝑛𝑖 × 𝑛𝑖}𝑘𝑖=1 can be written respectively as

𝑘
⨂
𝑖=1

A(𝑖) = A(1) ⊗ A(2) ⊗⋯⊗ A(𝑘)

and
𝑘

⨁
𝑖=1

A(𝑖) = A(1) ⊕ A(2) ⊕⋯⊕ A(𝑘).

The resultant operators can act on either vectors of length 𝑁 = ∏𝑘
𝑖=1 𝑛𝑖, or equivalently

tensors of shape (𝑛1, 𝑛2,…𝑛𝑘).

Antonian et al. (2023). PyKronecker: A Python Library for the Efficient Manipulation of Kronecker Products and Related Structures. Journal of
Open Source Software, 8(81), 4900. https://doi.org/10.21105/joss.04900.

1

https://doi.org/10.21105/joss.04900
https://github.com/openjournals/joss-reviews/issues/4900
https://github.com/nickelnine37/pykronecker
https://doi.org/10.5281/zenodo.7566803
https://kevinmoerman.org
https://orcid.org/0000-0003-3768-4269
https://github.com/JulianKarlBauer
https://github.com/nicoguaro
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04900


Efficient implementation of Kronecker-Vector Multiplication
Whilst a naive implementation of matrix-vector multiplication in this space has time and
memory complexity of 𝑂(𝑁2) a much more efficient implementation can be achieved. Work on
this topic can be traced back to Roth (1934), however the first direct treatment can be found
in Pereyra & Scherer (1973) and Boor (1979), both of which describe an efficient algorithm for
the multiplication of a Kronecker product matrix onto a vector/tensor in algebraic terms. Later
work such as Davio (1981), Buis & Dyksen (1996) and Fackler (2019) focused on optimising
this algorithm further by considering other practical issues such as available hardware and
physical memory layout. In particular, Fackler (2019) proposes the kronx algorithm, which
forms the basis for the implementation found in PyKronecker, with some differences resulting
from the C-style row-major memory layout used in Python as opposed to the Fortran-style
column-major layout of Matlab, which was the target language of the aforementioned paper. In
practice, by applying the kronx algorithm, the required memory and time complexity is reduced
to 𝑂(𝑁) and 𝑂(𝑁 ∑𝑘

𝑖=1 𝑛𝑖) respectively. This makes it possible to solve many problems that
would otherwise be intractable.

Statement of need
PyKronecker is aimed at researchers in any area of applied mathematics where systems involving
Kronecker products arise. It has been designed with the following specific goals in mind.

a) To provide a simple and intuitive object-oriented interface for manipulating systems
involving Kronecker-products with Python.

In PyKronecker, expressions are written in terms of a high-level operator abstraction. Users can
define new composite operators by applying familiar matrix operations such as scaling, matrix
addition/multiplication and transposition. This allows Kronecker operators to be manipulated
as if they are large NumPy arrays, removing the need to write efficient but sometimes cryptic
expressions involving the individual sub-matrices. This can greatly simplify code, making it
easier to read, debug and refactor, allowing users to focus on their research goals without
concerning themselves with underlying performance.

b) To execute matrix-vector multiplications in a way that is maximally efficient and runs on
parallel GPU/TPU hardware.

Significant effort has gone into optimising the execution of matrix-vector and matrix-tensor
multiplications. In particular, this comprises the kronx algorithm, Just In Time (JIT) compilation,
and parallel processing on GPU/TPU hardware. As a result of this, PyKronecker is able to
achieve very fast execution times compared to alternative implementations (see Table 1) .

c) To allow automatic differentiation for complex loss functions involving Kronecker products.

Many widely-used optimisation algorithms in Machine Learning (ML), such as stochastic
gradient descent, rely on rapidly evaluating the derivative of an objective function. Automatic
differentiation has played a key role in accelerating ML research by removing the need to
manually derive analytical gradients (Baydin et al., 2018). By integrating with the Jax
library, PyKronecker enables automatic differentiation of complex functions involving Kronecker
products out of the box.

To the best of the our knowledge, no existing software achieves all three of these aims.

Comparison with existing libraries
One potential alternative in Python is the PyLops library which provides an interface for
general functionally-defined linear operators, and includes a Kronecker product implementation
(Ravasi & Vasconcelos, 2020). It also supports GPU acceleration with CuPy (Okuta et al.,
2017). However, as a more general library, PyLops does not provide support for the Kronecker

Antonian et al. (2023). PyKronecker: A Python Library for the Efficient Manipulation of Kronecker Products and Related Structures. Journal of
Open Source Software, 8(81), 4900. https://doi.org/10.21105/joss.04900.

2

https://doi.org/10.21105/joss.04900


product of more than two matrices, implement a Kronecker sum operator, implement matrix-
tensor multiplication, or provide automatic differentiation. It is also significantly slower than
PyKronecker when operating on simple NumPy arrays.

Another alternative is the library Kronecker.jl (Stock et al., 2020), implemented in the Julia
programming language (Bezanson et al., 2017). Kronecker.jl has many of the same aims as
PyKronecker and has a a clean interface, making use of Julia’s support for unicode and infix
functions to create Kronecker products with a custom ⊗ operator. However, at this time, the
library does not support GPU acceleration or automatic differentiation, although the former is
in development.

Table 1. shows a feature comparison of these libraries, along with the kronx algorithm
implemented in “vanilla” (i.e., running on the CPU without JIT compilation) NumPy. The
table also shows the time to compute the multiplication of a Kronecker product against a
vector in two scenarios. In the first scenario, the Kronecker product is constructed from two
matrices of size (400×400) and (500×500), and in the second scenario Kronecker product is
constructed from three matrices of size (100×100), (150×150) and (200×200), respectively.
Experiments were performed with an Intel Core 2.80GHz i7-7700HQ CPU, and an Nvidia
1050Ti GPU. In both cases, PyKronecker on the GPU is the fastest by a significant margin.

Implementa-
tion Python

Auto-
diff

GPU
support

Compute time
(400, 500)

Compute time (100,
150, 200)

NumPy Yes No No 5.04 ms ± 343 µs 38.9 ms ± 4.07 ms
Kronecker.jl No No No 9.61 ms ± 881 µs 380 ms ± 6.15 ms
PyLops
(CPU)

Yes No No 17.9 ms ± 986 µs 478 ms ± 4.79 ms

PyLops
(GPU)

Yes No Yes 54.6 ms ± 1.04 ms 4.06 s ± 182 ms

PyKronecker
(CPU)

Yes Yes No 1.92 ms ± 136 µs 15.1 ms ± 2.24 ms

PyKronecker
(GPU)

Yes Yes Yes 261 µs ± 17.3 µs 220 µs ± 59.5 µs

Outlook and Future Work
There are several features that we are developing to expand the functionality of PyKronecker.
The first is to provide support for non-square operators. In a typical problem, the Kronecker
operators encountered represent simple linear transformations which preserve dimensionality.
However, there are a significant minority of contexts where this is not the case. The inclusion
of this feature would increase the range of possible applications. Secondly, we would like to
add support for sparse matrices. This would enable computation with larger matrices and
faster execution times where applicable. However this would require integration with Jax’s
sparse module, which is currently under development. Finally, for convenience, it may be useful
to add some commonly used algorithms such as the conjugate gradient method for solving
linear systems (Shewchuk, 1994), least squares, and various matrix decompositions such as
eigenvalue, Cholesky and LU.

Acknowledgements
Thank you to Chris Krapu for valuable discussions, especially with regard to integrating
PyKronecker with Jax, and automatic differentiation.

Antonian et al. (2023). PyKronecker: A Python Library for the Efficient Manipulation of Kronecker Products and Related Structures. Journal of
Open Source Software, 8(81), 4900. https://doi.org/10.21105/joss.04900.

3

https://doi.org/10.21105/joss.04900


References
Baydin, A. G., Pearlmutter, B. A., Radul, A. A., & Siskind, J. M. (2018). Automatic

differentiation in machine learning: A survey. Journal of Marchine Learning Research, 18,
1–43. https://doi.org/10.48550/arXiv.1502.05767

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to
numerical computing. SIAM Review, 59(1), 65–98. https://doi.org/10.1137/141000671

Boor, C. D. (1979). Efficient computer manipulation of tensor products. ACM Transactions
on Mathematmal Software, 5, 173–182. https://doi.org/10.1145/355826.355831

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G.,
Paszke, A., VanderPlas, J., Wanderman-Milne, S., & Zhang, Q. (2018). JAX: Composable
transformations of Python+NumPy programs (Version 0.3.13) [Computer software]. http:
//github.com/google/jax

Buis, P. E., & Dyksen, W. R. (1996). Efficient vector and parallel manipulation tensor products.
ACM Transactions on Mathematical Software. https://doi.org/10.1145/225545.225548

Davio, M. (1981). Kronecker products and shuffle algebra. IEEE Transactions on Computers,
C-30, 116–125. https://doi.org/10.1109/TC.1981.6312174

Fackler, P. L. (2019). Algorithm 993: Efficient computation with Kronecker products. ACM
Trans. Math. Softw., 45(2). https://doi.org/10.1145/3291041

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M., Peterson, P., … Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

Loan, C. F. V. (2000). The ubiquitous Kronecker product. Journal of Computational and
Applied Mathematics, 123(1), 85–100. https://doi.org/10.1016/S0377-0427(00)00393-9

Okuta, R., Unno, Y., Nishino, D., Hido, S., & Loomis, C. (2017). CuPy: A NumPy-
compatible library for NVIDIA GPU calculations. Proceedings of Workshop on Machine
Learning Systems (LearningSys) in the Thirty-First Annual Conference on Neural Information
Processing Systems (NIPS). http://learningsys.org/nips17/assets/papers/paper_16.pdf

Pereyra, V., & Scherer, G. (1973). Efficient computer manipulation of tensor products
with applications to multidimensional approximation (Vol. 27). https://doi.org/10.1090/
s0025-5718-1973-0395196-6

Ravasi, M., & Vasconcelos, I. (2020). PyLops—a linear-operator python library for scalable
algebra and optimization. SoftwareX, 11, 100361. https://doi.org/10.1016/j.softx.2019.
100361

Roth, W. E. (1934). On direct product matrices. Bulletin of the American Mathematical
Society. https://doi.org/10.2307/3609497

Shewchuk, J. R. (1994). An introduction to the conjugate gradient method without the
agonizing pain. https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

Stock, M., Pahikkala, T., Airola, A., & Baets, B. D. (2020). A general-purpose toolbox for
efficient Kronecker-based learning. https://doi.org/10.21105/jcon.00015

Antonian et al. (2023). PyKronecker: A Python Library for the Efficient Manipulation of Kronecker Products and Related Structures. Journal of
Open Source Software, 8(81), 4900. https://doi.org/10.21105/joss.04900.

4

https://doi.org/10.48550/arXiv.1502.05767
https://doi.org/10.1137/141000671
https://doi.org/10.1145/355826.355831
http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.1145/225545.225548
https://doi.org/10.1109/TC.1981.6312174
https://doi.org/10.1145/3291041
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1016/S0377-0427(00)00393-9
http://learningsys.org/nips17/assets/papers/paper_16.pdf
https://doi.org/10.1090/s0025-5718-1973-0395196-6
https://doi.org/10.1090/s0025-5718-1973-0395196-6
https://doi.org/10.1016/j.softx.2019.100361
https://doi.org/10.1016/j.softx.2019.100361
https://doi.org/10.2307/3609497
https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
https://doi.org/10.21105/jcon.00015
https://doi.org/10.21105/joss.04900

	Summary
	Kronecker products
	Efficient implementation of Kronecker-Vector Multiplication

	Statement of need
	Comparison with existing libraries

	Outlook and Future Work
	Acknowledgements
	References

