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Summary
In various research areas such as engineering, physics, and mathematics, numerical simulations
play an important role. A number of research software simulation frameworks have been
established, for instance, Dune (Bastian et al., 2008, 2021), Dumux (Flemisch et al., 2011;
Koch et al., 2021), Deal.II (Arndt et al., 2022), FEniCS (A. Logg, 2012; FEniCS, 2023), and
VirtualFluids (Kutscher et al., 2022). Numerical software typically has a high inherent com-
plexity as it aims at solving complex physical model equations by using advanced mathematical
methods for solving partial differential equations. Beyond this, the model equations often
involve parameters that are described by means of empirical constitutive relationships. Thus,
a numerical simulation usually brings together various software components: for the domain
discretization, the discretization method for the equations, the physics, and a non-linear and/or
linear solver to obtain a solution for the discretized equations.

While each of these components can be unit tested, it is important to have system tests
that verify that a particular type of simulation can be carried out successfully. By successful
we mean here that the simulation produces the correct results. As sufficiently complex
problems often lack analytical solutions, determining correctness of numerical simulations poses
a significant challenge. In the absence of an analytical solution, a common strategy is to
use a trusted reference for comparison (e.g., data measured in experiments or results from
previous publications). From the perspective of software quality assurance, it suffices to define
a reference result as the correct one and continuously verify that the code still reproduces
it. In numerical software, such regression tests play a vital role at the level of system tests
(Kempf & Koch, 2017). They make sure that developers notice when a certain change to the
code affects the results produced by the simulations. Whether the new results are better or
worse has to be decided by the developers, and in the case of the former, the reference results
may be updated.

In order to carry out regression tests, one must be able to detect significant deviations between
newly-computed and reference results. What a significant deviation is has to be decided by the
developers as well, and adequate tolerances have to be chosen that are big enough to avoid false
negatives from machine precision issues, but small enough to ensure that physically relevant
deviations in the results are detected. Some numerical software packages as, for instance, DUNE
and DuMux (Flemisch et al., 2011), provide mechanisms to detect such deviations. However,
the functionality is not provided independent of the frameworks themselves and is therefore
only available to their users. Besides this, only those mesh file formats that are used by the
frameworks are supported. Very recently, DuMux incorporated fieldcompare into its test suite
in place of its in-house solutions.
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Statement of Need
fieldcompare provides a tool that allows for detecting deviations in simulation results given
in a variety of file formats. It supports several VTK file formats (Schroeder et al., 2006)
out-of-the-box, and a large number of further file formats are accessible via interoperability
with meshio (Schlömer, 2022). However, fieldcompare is not restricted to mesh files, but can
be used for any file format that contains data that fits into the concept of fields (see Figure 1).
In principle, it can support file formats that represent collections of fields, where a field is
something that has a name and an associated array of values. Currently, in addition to mesh
files, support for DSV (delimiter-separated-values) files is provided; this is a widely-used format
to store secondary data from simulations that one possibly wants to include in regression tests.
The code is structured in a way that allows for easy integration of more file formats when
needed.

A challenge with regression-testing simulation results is that the order of points and cells may
change within an otherwise identical mesh. The numerical solution may be the same, but it is
organized in a different order in the mesh file. To this end, fieldcompare uses the approach
of Kempf & Koch (2017), allowing a user to sort the mesh by arranging the point coordinates
and cell connectivity in a lexicographically ascending manner to get a unique representation.
This avoids false negative regression tests when only the order of the mesh has changed.

Simulations often perform time integrations using a number of discrete time steps. To
facilitate comparing the results of an entire time series, the command-line-interface (CLI) of
fieldcompare offers the option to compare two folders with results. It searches both folders
for matching file names and then performs file comparisons for each of the matching pairs.

Finally, to make regression testing in continuous integration pipelines as easy as possible, we
developed a GitHub Action around fieldcompare (Gläser, 2022), that can be used by projects
hosted on GitHub to perform regression tests in their workflows with minimal effort. The CLI
of fieldcompare also supports exporting the results of a regression test run into the junit
xml file format, which is supported by some continuous integration platforms as, for instance,
GitLab CI. If the junit report is submitted as an artifact from a GitLab pipeline, the GitLab
web interface nicely displays which field comparisons have failed, passed, or were skipped,
without the need to scan the pipeline log. We register field comparisons via the testcase

element of the junit file format, while a file comparison is registered as a testsuite, with the
comparisons of all fields contained in the file as underlying testcases.

Concept
fieldcompare aims to provide a framework that can be used for comparing data structures
that represent collections of fields. Such a collection exposes fields together with the domain
on which they are defined. So far, our main focus has been on results of numerical simulations,
where the domains are computational meshes and the fields are, for instance, the values
of discrete numerical solutions on those meshes. In fieldcompare, such collections are
represented by the FieldData protocol, and two implementations currently exist: MeshFields
and TabularFields. The former represents numerical results, as discussed before, while the
latter exposes tabular data, for instance, read from a DSV file.

Two instances of objects conforming to the FieldData protocol can then be compared using
the FieldDataComparison class, which checks that the domains are equal and that a given
Predicate evaluates to true for the values of those fields that have matching names. A
Predicate is a callable that takes two value arrays and returns a PredicateResult, which is
an object that can be converted to bool, while further exposing information such as detected
violations, tolerances used, etc. Note that it is possible to provide different Predicates on a
per-field basis, and per default, the array values are compared for fuzzy equality.
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For an illustration of the concept, see Figure 1.

Figure 1: Basic concept: FieldData is either read from a file with the I/O facilities provided by
fieldcompare, or constructed manually, or by conversion from a meshio mesh. Subsequently, it can be
passed to the FieldDataComparison class to compare them against reference data, optionally using
custom predicates to compare the individual field values.

The following code snippet illustrates how to read fields from two mesh files, sort the meshes
to avoid false negatives from differing mesh ordering, and check the fields for customized fuzzy
equality:

from fieldcompare import FieldDataComparator

from fieldcompare.io import read

from fieldcompare.mesh import sort

from fieldcompare.predicates import FuzzyEquality

result_fields = read(”test/data/test_mesh.vtu”)

reference_fields = read(”test/data/test_mesh_permutated.vtu”)

comparator = FieldDataComparator(result_fields, reference_fields)

# The `FieldDataComparator` has a default choice for predicates

# that it uses. But, we can (optionally) pass in a selector

# function (which will be invoked with the two fields to be

# compared) from which we can return the predicate we would

# like to use for a pair of fields:

predicate = FuzzyEquality(abs_tol=1e-6, rel_tol=1e-8)
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result = comparator(predicate_selector=lambda _, __: predicate)

if not result and not result.domain_equality_check:

print(”Meshes not equal, retrying with sorted meshes...”)

result_fields = sort(result_fields)

reference_fields = sort(reference_fields)

result = FieldDataComparator(result_fields, reference_fields)(

predicate_selector=lambda _, __: predicate

)

print(f”Result is {bool(result)}”)

# The result is a suite of field comparisons that we can loop over

# and print information on each comparison that was performed

for field_comp in result:

print(f”Field name: {field_comp.name}”)

print(f”Status: {field_comp.status}”)

print(f”Predicate: {field_comp.predicate}”)

print(f”Report: {field_comp.report}”)

Note that the API of fieldcompare also exposes a MeshFieldsComparator that can be used
for fields defined on computational meshes. It automatically sorts the meshes in case they
are not equal, making it possible to write a simple equality check for meshes using a custom
predicate in a single instruction:

from fieldcompare.io import read

from fieldcompare.mesh import MeshFieldsComparator

from fieldcompare.predicates import FuzzyEquality

assert MeshFieldsComparator(

source=read(”test/data/test_mesh.vtu”),

reference=read(”test/data/test_mesh_permutated.vtu”)

)(

predicate_selector=lambda _, __: FuzzyEquality(

abs_tol=1e-6, rel_tol=1e-8

)

)

On the command line, the mesh is sorted by default (though this can be deactivated with a
runtime flag). Results similar to the examples shown above can be obtained with the following
commands:

# uses default tolerances

fieldcompare file test/data/test_mesh.vtu \

test/data/test_mesh_permutated.vtu

# specify tolerances

fieldcompare file test/data/test_mesh.vtu \

test/data/test_mesh_permutated.vtu \

--absolute-tolerance 1e-6 \

--relative-tolerance 1e-8

# specify the tolerances for a specific field only

fieldcompare file test/data/test_mesh.vtu \

test/data/test_mesh_permutated.vtu \

--absolute-tolerance function:1e-6 \

--relative-tolerance function:1e-8
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The fuzzy details
Fuzziness is crucial when comparing fields of floating-point values, which are unlikely to be
bit-wise identical to a reference solution when computed on different machines and/or after
slight modifications to the code. In the code examples above, we have used the FuzzyEquality
predicate of fieldcompare, which allows us define the absolute and relative tolerances to be
used. However, specifying the tolerances is optional, so what are the defaults?

First of all, the FuzzyEquality predicate in fieldcompare evaluates to true if two given arrays
have the same shape, and for each pair (𝑎, 𝑏) of scalar values in the arrays, the following
condition holds:

|𝑎 − 𝑏| ≤ 𝑚𝑎𝑥(𝜌 ⋅ 𝑚𝑎𝑥(|𝑎|, |𝑏|), 𝜖).

Here, 𝜌 and 𝜖 are the relative and absolute tolerance, respectively. Per default, 𝜖 = 0, which
means that each pair of scalars is tested by a relative criterion. The default relative tolerance
depends on the data type and is chosen as the difference between 1.0 and the next smallest
value larger than 1.0 as representable by the data type at hand (i.e., the unit of least precision).
For 64-bit floating-point values following the IEEE-754 standard (“IEEE Standard for Binary
Floating-Point Arithmetic” (1985)) this yields 𝜌default ≈ 2.22 ⋅ 10−16; that is, we require the
values to match in ≈ 15 decimal digits. Generally, the tolerances should be carefully chosen
for the context at hand, and the rather strict default values were selected to minimize the
chances of false positives when using fieldcompare without any tolerance settings.

A common issue, in particular in numerical simulations, is that the values in a field may span
several orders of magnitude, which may have a negative impact on the precision one can expect
from the smaller values. As an example, consider a flow simulation with very high velocities in
some parts of the domain, while in others the velocity is close to zero. A relative tolerance
appropriate for the large velocities is unlikely to be suitable for the entire range of values.

For such scenarios, a suitable choice for the absolute tolerance 𝜖 comes into play, which can
help avoid false negatives from comparing the velocities that are close to zero. According to
the above formula, a switch to an absolute criterion occurs when the scaled relative tolerance
falls below 𝜖. In other words, 𝜖 defines a lower bound for the allowed difference between field
values, which is illustrated in the figures below.
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Figure 2: Visualization of the fuzzy equality check for different absolute and relative tolerances (chosen
very high for illustrative purposes). For a given value 𝑎 (x-axis), 𝑏𝑚𝑖𝑛 and 𝑏𝑚𝑎𝑥 visualize the lowest and
highest values that evaluate fuzzy-equal to 𝑎, respectively. Consequently, all values that lie within this
interval are considered fuzzy-equal to 𝑎 (visualized by the dark grey area).

As can be seen, while for 𝜖 = 0 the allowed difference between values goes down to zero as
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𝑎 → 0, a constant residual difference is allowed for small values of 𝑎 in the case of 𝜖 > 0. A
suitable choice for 𝜖 depends on the fields to be compared, and when comparing a large number
of fields, it can be cumbersome to define 𝜖 for all of them. We found that a useful heuristic
is to define 𝜖 as a fraction of the maximum absolute value of both fields as an estimate for
the precision that can be expected from the smaller values. Using the fieldcompare API, this
can be achieved with the ScaledTolerance class, which is accepted by all interfaces receiving
tolerances. A modified version of the previous example may look like this:

from fieldcompare.io import read

from fieldcompare.mesh import MeshFieldsComparator

from fieldcompare.predicates import FuzzyEquality, ScaledTolerance

assert MeshFieldsComparator(

source=read(”test/data/test_mesh.vtu”),

reference=read(”test/data/test_mesh_permutated.vtu”)

)(

predicate_selector=lambda _, __: FuzzyEquality(

abs_tol=ScaledTolerance(base_tolerance=1e-12),

rel_tol=1e-8

)

)

With the above code, the absolute tolerance is computed for a pair of fields 𝑓1 and 𝑓2 via
𝜖 = 𝑚𝑎𝑥(𝑚𝑎𝑔(𝑓1),𝑚𝑎𝑔(𝑓2)) ⋅ 10−12, where mag estimates the magnitude as the maximum
absolute scalar value in a field. In the CLI, this functionality is exposed via the following syntax:

fieldcompare file test/data/test_mesh.vtu \

test/data/test_mesh_permutated.vtu \

-atol 1e-12*max

Fuzzy mesh comparison
As mentioned above, before the FieldDataComparison compares fields, it checks if the domains
on which they are defined are equal. In the case of computational meshes, this check also has
to be done in a fuzzy sense, since the point coordinates of the meshes are typically given as
floating-point values. Moreover, the mesh sorting algorithms shown in the examples above
also rely on fuzziness, and therefore, it is again crucial that suitable tolerances are defined. As
a default, fieldcompare uses 𝜌 = 10−8 and 𝜖 = ̃𝑥 ∗ 10−8, where ̃𝑥 is the maximum occurring
coordinate value in all points of the grid. Tolerances for domain equality checks can be set via
the CLI as follows (again supporting the definition of scaled absolute tolerances):

fieldcompare file test/data/test_mesh.vtu \

test/data/test_mesh_permutated.vtu \

-atol domain:1e-12*max \

-rtol domain:1e-7

Programmatically, tolerances can be set directly on instances of a Mesh. As outlined before,
the domain is a mesh when reading fields from mesh files, and the behavior of the above call
to the CLI can be reproduced programmatically with the following code snippet:

from fieldcompare.io import read

from fieldcompare.mesh import MeshFieldsComparator

from fieldcompare.predicates import FuzzyEquality, ScaledTolerance

source = read(”test/data/test_mesh.vtu”)

reference = read(”test/data/test_mesh_permutated.vtu”)

source.domain.set_tolerances(

abs_tol=ScaledTolerance(1e-12),
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rel_tol=1e-7

)

reference.domain.set_tolerances(

abs_tol=ScaledTolerance(1e-12),

rel_tol=1e-7

)

assert MeshFieldsComparator(source, reference)()

Applications
fieldcompare is currently used successfully by VirtualFluids (Kutscher et al., 2022) to
continuously verify the results of the latest changes to the source code inside a continuous
integration (CI) pipeline. To this end, VirtualFluids makes use of the command-line-interface
of fieldcompare. Inside the CI pipeline, the trusted reference data is downloaded from a
separate data source, in this case a Git repository. After that, the fieldcompare package
is installed, and finally, a bash script compiles VirtualFluids, runs several simulations, and
compares their result data with the respective reference files using the fieldcompare CLI.
In case one of the test cases fails, the developers are notified by the continuous integration
pipeline, therefore providing rapid feedback and allowing them to immediately start working
on resolving the issue.

External Repository

Continuous Integration Pipeline

run 
simulation

Actual Data

Install 
FieldCompare

Developers

Notify

Reference
Data

Test Results

FieldCompare

Figure 3: Overview of the VirtualFluids pipeline using fieldcompare

Another project in which fieldcompare is currently in use is Argo (Tolle & Maric, 2023),
an OpenFoam (OpenFOAM, 2023) module for multiphase flow simulations. The continuous
integration pipeline of Argo checks if the current state of the code is able to reproduce
previously-published results by rerunning the cases of a paper (Tolle et al., 2022), fetching the
published results from Zenodo (European Organization For Nuclear Research & OpenAIRE,
2013; Maric et al., 2021), and using fieldcompare to check for significant deviations.

The SURESOFT (Blech et al., 2022) project aims to establish a common usable methodology
and infrastructure based on the concepts of continuous integration and containerization to
approve the quality of research software, easing software delivery and ensuring long-term
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sustainability and availability. One exemplary workflow of SURESOFT (Peters & Marcus, 2022)
deploys a Singularity container on an HPC platform using HPC-Rocket (Marcus, 2022), runs a
numerical simulation on the cluster, and validates the results with fieldcompare.

Finally, DuMux (Koch et al., 2021) uses the API of fieldcompare in its test suite, consisting
of nearly 600 unit, integration, and system tests, the majority of which are regression tests.
Calls to the fieldcompare API occur in the central test script of DuMux, where suitable default
tolerances are defined, which are overridden by a few individual tests.
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