
Metagenomic classification with KrakenUniq on
low-memory computers
Christopher Pockrandt1,2¶, Aleksey V. Zimin1,2, and Steven L. Salzberg1,2,3,4¶

1 Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21218, USA 2
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA 3
Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA 4 Department
of Biostatistics, Johns Hopkins University, Baltimore, MD 21218, USA ¶ Corresponding author

DOI: 10.21105/joss.04908

Software
• Review
• Repository
• Archive

Editor: Lorena Pantano
Reviewers:

• @Jessime
• @MaximLippeveld

Submitted: 06 October 2022
Published: 28 December 2022

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Kraken and KrakenUniq are widely-used tools for classifying metagenomics sequences. A key
requirement for these systems is a database containing all k-mers from all genomes that the
users want to be able to detect, where k = 31 by default. This database can be very large, easily
exceeding 100 gigabytes (GB) and sometimes 400 GB. Previously, Kraken and KrakenUniq
required loading the entire database into main memory (RAM), and if RAM was insufficient,
they used memory mapping, which significantly increased the running time for large datasets.
We have implemented a new algorithm in KrakenUniq that allows it to load and process the
database in chunks, with only a modest increase in running time. This enhancement now
makes it feasible to run KrakenUniq on very large datasets and huge databases on virtually
any computer, even a laptop, while providing the same very high classification accuracy as the
previous system.

Statement of need
KrakenUniq software classifies reads from metagenomic samples to establish which organisms
are present in the samples and estimate their abundance. The software is widely-used used by
researchers and clinicians in medical diagnostics, microbiome and environmental studies.

Typical databases used by KrakenUniq are tens to hundreds of gigabytes in size. The original
KrakenUniq code required loading the entire database in RAM, which demanded expensive
high-memory servers to run it efficiently. If a user did not have enough physical RAM to load
the entire database, KrakenUniq resorted to memory-mapping the database, which significantly
increased run times, frequently by a factor of more than 100. The new functionality described
in this paper enables users who do not have access to high-memory servers to run KrakenUniq
efficiently, with a CPU time performance increase of 3 to 4-fold, down from 100+.

Introduction
The GenBank genome repository (Benson et al., 2012) currently contains over 400,000
prokaryotic genomes and over 20,000 eukaryotes, including thousands of microbial eukaryotes
such as fungi and protists. To take advantage of this ever-growing variety of microbial sequences,
metagenomic sequence analysis methods must create customized databases that capture all
of this sequence diversity. Tools such as Kraken (Wood & Salzberg, 2014) and KrakenUniq
(Breitwieser et al., 2018) classify DNA or RNA sequencing reads against a pre-built database
of genomes using an exact k-mer matching strategy that is not only highly accurate but that,
because it avoids the step of sequence alignment, makes both systems extremely fast.

Pockrandt et al. (2022). Metagenomic classification with KrakenUniq on low-memory computers. Journal of Open Source Software, 7(80), 4908.
https://doi.org/10.21105/joss.04908.

1

https://doi.org/10.21105/joss.04908
https://github.com/openjournals/joss-reviews/issues/4908
https://github.com/fbreitwieser/krakenuniq
https://doi.org/10.5281/zenodo.7459217
https://lpantano.github.io/
https://orcid.org/0000-0002-3859-3249
https://github.com/Jessime
https://github.com/MaximLippeveld
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04908


The Kraken database is a customized, compressed data structure that associates a unique
taxonomy identifier with every single k-mer in every genome in the database. (Note that both
Kraken and KrakenUniq use the same database design, so we will refer to both as Kraken
databases.) If a k-mer occurs in two or more genomes, then the database stores the taxonomy
ID associated with the lowest common ancestor of those genomes. This strategy means that
only a single ID is attached to each k-mer.

However, with the number of genomes available today, a standard Kraken database will contain
billions of k-mers, and even with careful compression this data structure can grow very large.
A key requirement for the speed of the Kraken algorithm (which is 900 times faster than
MegaBlast (Wood & Salzberg, 2014)) is the loading of the entire database into main memory.
For the large databases and read datasets that are commonly used in metagenomics experiments
today, this requires dedicated machines with large amounts of RAM (e.g., exceeding 100 GB
or even 400 GB), without which classification becomes slow and impractical. The newer
Kraken2 system (Wood et al., 2019) achieves a significantly lower memory footprint by using
probabilistic data structures to reduce the database size, at the cost of slightly lower accuracy
than KrakenUniq. This reduction in accuracy includes a very small but non-zero false positive
rate (i.e., where the system incorrectly reports that a k-mer is present in a particular genome),
which is problematic for certain applications that require very high precision. In particular, when
metagenomic sequencing is used for the diagnosis of infections in a clinical setting (Salzberg
et al., 2016), the pathogen of interest might be detected from just a handful of reads. In that
scenario, even a few false positives can be confusing, and KrakenUniq is the preferred method
rather than Kraken2.

By default, KrakenUniq performs memory mapping to load the database; i.e., it does not
load the entire database into main memory. (Kraken 1 employs the same strategy.) This
makes classification of larger read datasets much slower, but it allows KrakenUniq to run on
machines with low available main memory. If enough free RAM is available to hold the entire
database in main memory, users are recommended to explicitly load the entire database prior
to classification using the flag --preload, which dramatically speeds up the classification (see
Table 1).

To improve KrakenUniq’s performance when not enough main memory is available to load
the entire database into RAM, we have added a new capability to KrakenUniq, which we
call database chunking. This new feature is released in KrakenUniq v1.0.0 and subsequent
releases at: https://github.com/fbreitwieser/krakenuniq (Github) https://anaconda.org/bio-
conda/krakenuniq (Conda)

Database chunking
The KrakenUniq database consists of two tables: A k-mer table maps each k-mer to its
taxonomic ID and is sorted by the k-mers’ minimizers (Roberts et al., 2004). A second table,
the minimizer table, is lexicographically sorted and maps each minimizer to the corresponding
k-mers in the k-mer table which form a contiguous block. Hence, the database can be chunked
by taking a chunk of the minimizer table and the corresponding range of the k-mer table that
contains all k-mers for the selected minimizers.

Under this new algorithm, KrakenUniq loads one chunk of the database into memory at a time.
KrakenUniq performs a binary search on the minimizer table to find the largest minimizer
such that the chunk of the minimizer table and the corresponding chunk of the k-mer table
together use not more than the specified amount of memory. It then loads the chunk of the
minimizer table and the corresponding chunk of the k-mer table and iterates over all of the
reads provided as input. The code looks up all k-mers in the reads in the currently-loaded
chunk of the database. The taxonomic IDs for the k-mers that matched a k-mer in the chunk
(or placeholders for k-mers without a hit) are stored in a temporary file on disk for each read.
With every chunk iteration, taxonomic IDs of newly found k-mers in the reads are appended to

Pockrandt et al. (2022). Metagenomic classification with KrakenUniq on low-memory computers. Journal of Open Source Software, 7(80), 4908.
https://doi.org/10.21105/joss.04908.

2

https://doi.org/10.21105/joss.04908


the temporary file. This process is repeated until the entire database has been processed. At
this point the temporary file contains taxonomic IDs for all k-mers in the reads that matched
any part of the database. KrakenUniq then reads the temporary file, collects k-mer hits for
every read, and uses them to classify each read. Classification results will be identical to
running in the default mode; i.e., database chunking does not alter the output.

This new feature makes it feasible to run KrakenUniq on very large datasets and huge databases
on virtually any computer, even a laptop, while providing exact classifications that are identical
to those of KrakenUniq in its other modes. Users can employ this feature by using --preload-

size to specify the amount of available main memory that they want to use for loading chunks
of the database, e.g., --preload-size 8G or --preload-size 500M.

Mode Running time
default (memory mapping) 48 hours
--preload 14 min
--preload-size 8G 47 min
--preload-size 16G 32 min
--preload-size 32G 25 min
--preload-size 64G 19 min

Table 1: Running times for classifying 9.4 million reads (from a human eye metagenome, acces-
sion SRR12486990, available from NCBI at https://www.ncbi.nlm.nih.gov/sra/SRR12486990)
with 8 threads using KrakenUniq in different modes. The database size was 392 GB, and
it consisted of all complete bacterial, archeal, and viral genomes in RefSeq from 2020, 46
selected eukaryotic human pathogens (Lu & Salzberg, 2018)), as well the human genome and a
collection of common vector sequences. The database is available for download at https://ben-
langmead.github.io/aws-indexes/k2 under the name EuPathDB46. The command lines used
to measure the runtimes were krakenuniq --db krakendb-2020-08-16-all_pluseupath --

threads 24 --report-file report --output classify SRR12486990.fastq with no addi-
tional options for default, and with addition of the preload option shown in the table for various
preload sizes. in the database chunking experiments (using –preload-size) KrakenUniq loaded
the database into RAM in 49, 25, 13 and 7 chunks (respectively).

Running times can vary significantly depending on the type of storage (e.g., databases on
network storage can take longer to load) and the size of the read dataset (i.e., classifying
a small number of reads does not justify preloading the entire database, especially of fast
storage). The speed of loading the database is not impacted by the --preload-size option
because the database is still read in a linear way.
Saving intermediate files from the chunks is done in the same way as in the original code.
The only difference is that now classification results from all individual chunks are concatenated
into a single file, which is read once all chunks are finished. Table 1 shows that in a typical use
case, even when the database does fit in RAM, loading the entire database (--preload option)
is far faster than memory mapping (14 minutes versus 48 hours). Loading the database by
chunks adds overhead because of the need to iterate over the reads multiple times, but is
still comparable to pre-loading the entire database and highly recommended when not enough
main memory is available. For example, limiting the database to 8G, which means it can be
loaded even on a standard laptop computer, increased the running time only about 3.4-fold,
even though the database was broken into 49 chunks. For large read datasets we expect that
setting the --preload or --preload-size flag will always be faster than the default behavior
of memory mapping. The format of the databases used by the new algorithm has not changed,
hence all previously built databases for Kraken and KrakenUniq can be used.

This feature has only been added to KrakenUniq, and not to Kraken, which is no longer actively
maintained. Because KrakenUniq offers more features, shares the same implementation with

Pockrandt et al. (2022). Metagenomic classification with KrakenUniq on low-memory computers. Journal of Open Source Software, 7(80), 4908.
https://doi.org/10.21105/joss.04908.

3

https://doi.org/10.21105/joss.04908


Kraken and produces the same output, we highly recommend that users upgrade from Kraken
to KrakenUniq.

Acknowledgements
This work was supported in part by NIH grants R35-GM130151, R01-HG006677, and U24-
CA180922.

References
Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J.,

& Sayers, E. W. (2012). GenBank. Nucleic Acids Research, 41(D1), D36–D42. https:
//doi.org/10.1093/nar/gks1195

Breitwieser, F. P., Baker, D. N., & Salzberg, S. L. (2018). KrakenUniq: Confident and fast
metagenomics classification using unique k-mer counts. Genome Biology, 19(1), 1–10.
https://doi.org/10.1186/s13059-018-1568-0

Lu, J., & Salzberg, S. L. (2018). Removing contaminants from databases of draft genomes.
PLoS Computational Biology, 14(6), e1006277. https://doi.org/10.1371/journal.pcbi.
1006277

Roberts, M., Hayes, W., Hunt, B. R., Mount, S. M., & Yorke, J. A. (2004). Reducing storage
requirements for biological sequence comparison. Bioinformatics, 20(18), 3363–3369.
https://doi.org/10.1093/bioinformatics/bth408

Salzberg, S., Breitwieser, F., Kumar, A., Hao, H., Burger, P., Rodriguez, F., Lim, M.,
Quiñones-Hinojosa, A., Gallia, G., Tornheim, J., Melia, M., Sears, C., & Pardo, C. (2016).
Next-generation sequencing in neuropathologic diagnosis of infections of the nervous system.
Neurology: Neuroimmunology and Neuroinflammation, 3(4), e251.

Wood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic analysis with kraken 2.
Genome Biology, 20(1), 1–13. https://doi.org/10.1186/s13059-019-1891-0

Wood, D. E., & Salzberg, S. L. (2014). Kraken: Ultrafast metagenomic sequence classifi-
cation using exact alignments. Genome Biology, 15(3), 1–12. https://doi.org/10.1186/
gb-2014-15-3-r46

Pockrandt et al. (2022). Metagenomic classification with KrakenUniq on low-memory computers. Journal of Open Source Software, 7(80), 4908.
https://doi.org/10.21105/joss.04908.

4

https://doi.org/10.1093/nar/gks1195
https://doi.org/10.1093/nar/gks1195
https://doi.org/10.1186/s13059-018-1568-0
https://doi.org/10.1371/journal.pcbi.1006277
https://doi.org/10.1371/journal.pcbi.1006277
https://doi.org/10.1093/bioinformatics/bth408
https://www.ncbi.nlm.nih.gov/pubmed/27340685
https://doi.org/10.1186/s13059-019-1891-0
https://doi.org/10.1186/gb-2014-15-3-r46
https://doi.org/10.1186/gb-2014-15-3-r46
https://doi.org/10.21105/joss.04908

	Summary
	Statement of need
	Introduction
	Database chunking
	Acknowledgements
	References

