
DTCC Builder: A mesh generator for automatic,
efficient, and robust mesh generation for large-scale
city modeling and simulation

Anders Logg 1,4*, Vasilis Naserentin 1,2,4*, and Dag Wästberg 3,4*

1 Chalmers University of Technology 2 Aristotle University of Thessaloniki 3 Chalmers Industriteknik 4
Digital Twin Cities Centre * These authors contributed equally.

DOI: 10.21105/joss.04928

Software
• Review
• Repository
• Archive

Editor: Chris Vernon
Reviewers:

• @ifthompson
• @ipadjen

Submitted: 24 October 2022
Published: 01 June 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Digital Twin Cities Centre (DTCC) Builder is a mesh generator for automatic, efficient, and
robust mesh generation for large-scale city modeling and simulation. Using standard and
widely available raw data sources in the form of point clouds and cadastral data, DTCC
Builder generates high-quality 3D surface and volume meshes, suitable for both visualization
and simulation. In particular, DTCC Builder is capable of generating large-scale, conforming
tetrahedral volume meshes of cities suitable for finite element (FEM) simulation.

Statement of need
The interest in creating digital twins, i.e., models that mirror physical systems in real-time and
enable analysis and prediction, has been rapidly increasing in recent years. In particular, there
has been a surge in the interest for creating digital twins of cities (Ketzler et al., 2020). The
creation of a digital twin of a city often involves the creation of a 3D model. Such 3D models
may either be created manually, semi-automatically, or in a fully automatic way from available
raw data, often in the form of point clouds obtained from aerial scanning and cadastral data
(property maps).

3D mesh generation is a very challenging process, especially in the face of bad quality and low
resolution data, which is often the case for publicly available data for cities. Furthermore, if
the 3D meshes are to be used for modeling and simulation, certain requirements are posed on
the quality of the meshes. Previous research on 3D mesh generation for cities demonstrated,
but do not fully account for the issues at hand (Ledoux et al., 2019, 2021; Paden et al., 2022).
DTCC Builder aims to solve these challenges by automating the mesh generation process in a
both robust and efficient way.

DTCC Builder is part of the open-source digital twin platform DTCC Platform developed at
the Digital Twin Cities Centre.

Functionality
DTCC Builder provides two main programs: dtcc-generate-citymodel and dtcc-generate-

mesh. The two programs are run in sequence. First, dtcc-generate-citymodel generates a
city model from input data in the form of one or more point clouds and cadastral data. Then,
dtcc-generate-mesh reads the generated city model and generates output data in the form of
both triangular surface meshes and tetrahedral volume meshes. Figure 1 and Figure 2 show a
surface mesh generated for an area in Gothenburg, Sweden.

Logg et al. (2023). DTCC Builder: A mesh generator for automatic, efficient, and robust mesh generation for large-scale city modeling and
simulation. Journal of Open Source Software, 8(86), 4928. https://doi.org/10.21105/joss.04928.

1

https://orcid.org/0000-0002-1547-4773
https://orcid.org/0000-0002-3485-9329
https://orcid.org/0000-0002-8630-8262
https://doi.org/10.21105/joss.04928
https://github.com/openjournals/joss-reviews/issues/4928
https://github.com/dtcc-platform/dtcc-builder
https://doi.org/10.5281/zenodo.7988751
https://energyenvironment.pnnl.gov/staff/staff_info.asp?staff_num=1834
https://orcid.org/0000-0002-3406-6214
https://github.com/ifthompson
https://github.com/ipadjen
https://creativecommons.org/licenses/by/4.0/
https://platform.dtcc.chalmers.se
https://dtcc.chalmers.se
https://doi.org/10.21105/joss.04928


Figure 1: Surface mesh of an area (Majorna) in Gothenburg, generated with DTCC Buider.

Figure 2: Detail of surface mesh of an area (Majorna) in Gothenburg, generated with DTCC Builder.

Method and implementation
DTCC Builder uses a novel algorithm for mesh generation. The key idea is to utilize the
special geometry of city models to reduce the 3D mesh generation problem to a 2D problem.
A 2D mesh respecting the polygonal footprints of buildings is generated and then layered to
create a 3D mesh. Building heights and ground height are incorporated through a PDE-based
smoothing process as described by Naserentin & Logg (2022).

DTCC Builder is implemented in C++ and makes use of several open-source packages,
notably FEniCS (Logg et al., 2012) for solving PDEs, Triangle (Shewchuk, 1996) for 2D mesh
generation, and GEOS (GEOS contributors, 2021) for geometric operations.

Logg et al. (2023). DTCC Builder: A mesh generator for automatic, efficient, and robust mesh generation for large-scale city modeling and
simulation. Journal of Open Source Software, 8(86), 4928. https://doi.org/10.21105/joss.04928.

2

https://doi.org/10.21105/joss.04928


Documentation
The documentation for DTCC Builder is published on the DTCC Builder Github pages as well
as on the documentation pages for DTCC Platform.

Limitations and future work
DTCC Builder currently only provides a C++ and command-line interface. Future versions
will provide a Python interface and also an online interface as part of DTCC Platform.

DTCC Builder currently generates city models in Level of Detail (LoD) 1.2 but ongoing work
seeks to extend DTCC Builder to LoD1.3 and LoD2.x.

DTCC Builder currently runs on a single thread. Future versions versions will provide means of
parallelization across shared or distributed memory.

Acknowledgements
This work is part of the Digital Twin Cities Centre supported by Sweden’s Innovation Agency
Vinnova under Grant No. 2019-00041.

References
GEOS contributors. (2021). GEOS coordinate transformation software library. Open Source

Geospatial Foundation.

Ketzler, B., Naserentin, V., Latino, F., Zangelidis, C., Thuvander, L., & Logg, A. (2020).
Digital Twins for Cities: A State of the Art Review. Built Environment, 46(4), 547–573.
https://doi.org/10.2148/benv.46.4.547

Ledoux, H., Arroyo Ohori, K., Kumar, K., Dukai, B., Labetski, A., & Vitalis, S. (2019).
CityJSON: A compact and easy-to-use encoding of the CityGML data model. Open
Geospatial Data, Software and Standards. https://doi.org/10.1186/s40965-019-0064-0

Ledoux, H., Biljecki, F., Dukai, B., Kumar, K., Peters, R., Stoter, J., & Commandeur, T.
(2021). 3dfier: Automatic reconstruction of 3D city models. Journal of Open Source
Software, 6(57), 2866. https://doi.org/10.21105/joss.02866

Logg, A., Mardal, K.-A., & Wells, G. (2012). Automated solution of differential equations
by the finite element method: The FEniCS book (Vol. 84). Springer Science & Business
Media.

Naserentin, V., & Logg, A. (2022). Digital twins for city simulation: Automatic, efficient, and
robust mesh generation for large-scale city modeling and simulation. arXiv:2210.05250.
https://arxiv.org/abs/2210.05250

Paden, I., García-Sánchez, C., & Ledoux, H. (2022). Towards automatic reconstruction of
3D city models tailored for urban flow simulations. Frontiers in Built Environment, 8.
https://doi.org/10.3389/fbuil.2022.899332

Shewchuk, J. R. (1996). Triangle: Engineering a 2D quality mesh generator and Delaunay
triangulator. Workshop on Applied Computational Geometry, 203–222. https://doi.org/
10.1007/bfb0014497

Logg et al. (2023). DTCC Builder: A mesh generator for automatic, efficient, and robust mesh generation for large-scale city modeling and
simulation. Journal of Open Source Software, 8(86), 4928. https://doi.org/10.21105/joss.04928.

3

https://github.com/dtcc-platform/dtcc-builder
https://platform.dtcc.chalmers.se
https://platform.dtcc.chalmers.se
https://doi.org/10.2148/benv.46.4.547
https://doi.org/10.1186/s40965-019-0064-0
https://doi.org/10.21105/joss.02866
https://arxiv.org/abs/2210.05250
https://doi.org/10.3389/fbuil.2022.899332
https://doi.org/10.1007/bfb0014497
https://doi.org/10.1007/bfb0014497
https://doi.org/10.21105/joss.04928

	Summary
	Statement of need
	Functionality
	Method and implementation
	Documentation
	Limitations and future work
	Acknowledgements
	References

