
elapid: Species distribution modeling tools for Python
Christopher B. Anderson 1,2

1 Earth Observation Lab, Planet Labs PBC, San Francisco, CA, USA 2 Center for Conservation Biology,
Stanford University, Stanford, CA, USA

DOI: 10.21105/joss.04930

Software
• Review
• Repository
• Archive

Editor: Gracielle Higino
Reviewers:

• @chrisborges
• @gabrieldansereau

Submitted: 01 October 2022
Published: 19 April 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Species distribution modeling (SDM) is based on the Grinellean niche concept: the environ-
mental conditions that allow individuals of a species to survive and reproduce will constrain the
distributions of those species over space and time (Grinnell, 1917; Wiens et al., 2009). The
inputs to these models are typically spatially-explicit species occurrence records and a series of
environmental covariates, which might include information on climate, topography, land cover
or hydrology (Booth et al., 2014). While many modeling methods have been developed to
quantify and map these species-environment interactions, few software systems include both
a) the appropriate statistical modeling routines and b) support for handling the full suite of
geospatial analysis required to prepare data to fit, apply, and summarize these models.

elapid is both a geospatial analysis and a species distribution modeling package. It provides an
interface between vector and raster data for selecting random point samples, annotating point
locations with coincident raster data, and summarizing raster values inside a polygon with
zonal statistics. It provides a series of covariate transformation routines for increasing feature
dimensionality, quantifying interaction terms and normalizing unit scales. It provides a Python
implementation of the popular Maxent SDM (Phillips et al., 2017) using infinitely weighted
logistic regression (Fithian & Hastie, 2013). It also includes a standard Niche Envelope Model
(Nix, 1986), both of which were written to match the software design patterns of modern
machine learning packages like sklearn (Grisel et al., 2022). It also allows users to add spatial
context to any model by providing methods for spatially splitting train/test data and computing
geographically-explicit sample weights. elapid was designed as a contemporary SDM package,
built on best practices from the past and aspiring to support the next generation of biodiversity
modeling workflows.

Statement of need
Species occurrence data—georeferenced point locations where a species has been observed
and identified—are an important resource for understanding the environmental conditions
that predict habitat suitability for that species. These data are now abundant thanks to
the proliferation of institutional open data policies, large-scale collaborations among research
groups, and advances in the quality and popularity of citizen science applications (GBIF, 2022;
iNaturalist, 2022). Tools for working with these data haven’t necessarily kept pace, however,
especially ones that support modern geospatial data formats and machine learning workflows.

elapid builds on a suite of well-known statistical modeling tools commonly used by biogeogra-
phers, extending them to add novel features, to work with cloud-hosted data, and to save and
share models. It provides methods for managing the full lifecyle of modeling data: generating
background point data, extracting raster values for each point (i.e. point annotation), splitting
train/test data, fitting models, and applying predictions to rasters. It provides a very high
degree of control for model design, which is important for several reasons.
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First is to provide simple and flexible methods for working with spatial data. Point data are
managed as GeoSeries and GeoDataFrame objects (Jordahl et al., 2022), which can be easily
merged and split using traditional indexing method as well as with geographic methods. They
can also be reprojected on-the-fly. elapid reads and writes raster data with rasterio, which
provides a similarly convenient set of methods for indexing and reading point locations from
rasters (Gillies, 2013). These features are wrapped to handle many of the routine tasks and
gotchas of working with geospatial data. It doesn’t require data to be rigorously pre-processed
so that all rasters are perfectly aligned, nor does it require that all datasets are in matching
projections. elapid can extract pixel-level raster data from datasets at different resolutions,
from multi-band files, and harmonize projections on-the-fly, for both model fitting and for
inference.

Another advantage of elapid’s flexible design is that it can be used to extend traditional
species distribution models in ways that are difficult to implement in other software systems.
For example, working with multi-temporal data—fitting SDMs to occurrence records and
environmental data from multiple time periods—is supported. Each time period’s occurrence
data can be annotated using the coincident environmental data. Random background samples
can be generated for each time period, ensuring the background represents a broad distribution
of conditions across the full temporal extent. These presence and background samples are
then concatenated into a single GeoDataFrame for model fitting. Fitted models can be applied
to multi-temporal environmental data to map changes in habitat suitability over time, and can
also be saved and restored later for future inference.

elapid is one among several open source species distribution modeling packages. The R
package ENMeval is a good direct comparison (Kass et al., 2021). ENMeval provides a series
of tools for model fitting, model selection and cross-validation, making calls under the hood
to maxnet and dismo (Phillips et al., 2017). elapid implements similar methods for spatial
cross-validation, builds on the rich feature transformation tools implemented in maxnet, and
employs similar model fitting techniques. elapid provides additional tools to simplify working
with geospatial datasets, and provides additional novel cross-validation methods like geographic
k-fold and buffered leave-one-out strategies (Ploton et al., 2020). It is also one of the first
open source species distribution modeling packages in Python, and it does not include any
proprietary software dependencies (Brown, 2014).

Why Maxent still matters
The main scientific contribution of elapid is extending and modifying the Maxent SDM, a
model and software system as popular as it is maligned (Fourcade et al., 2018; Phillips &
Dudıḱ, 2008). First published in 2006, Maxent remains relevant because it’s a presence-only
model designed to work with the kinds of species occurrence data data that have proliferated
lately.

Presence-only models formulate binary classification models as presence/background (1/0)
instead of presence/absence, which changes how models are fit and interpreted (Fithian &
Hastie, 2013; Merow et al., 2013). Background points are a spatially-random sample of the
landscapes where a species might be found, which should be sampled with the same level of
effort and bias as the species occurrence data. Presence/background models posit the null
expectation that a species is equally likely to be found anywhere within it’s range. Differences
in environmental conditions between where a species occurs and across the full landscape
should indicate niche preferences. Relative habitat suitability is then determined based on
differences in the relative frequency distributions of conditions in these regions. Presence-only
models reduce the burden of finding absence data, which are problematic to begin with, but
they increase the burden of precisely selecting background points. These define what relative
habitat suitability is relative to (Barbet-Massin et al., 2012; Elith et al., 2011).

elapid includes several methods for sampling the background. Points can be sampled uniformly
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within a polygon, like a range map or an ecoregion extent. Sampling points from rasters can be
done uniformly across the full extent or only from pixels with valid, unmasked data. Working
with bias rasters is also supported. Any raster with monotonically increasing values can be
used as a sample probability map, increasing the probability that a sample is drawn in locations
with higher pixel values. One important role for the niche envelope model is to create bias
maps to ensure background points are only sampled within the broad climatic envelope where
a species occurs. The target-group bias sampling method has also been shown to effectively
correct for sample bias (Barber et al., 2022).

A common criticism of Maxent is that, though it depends on spatially-explicit data, it’s not
really a spatial model. Covariate data are indexed and extracted spatially, but there are no model
terms based on location, distance, or point density, and all samples are treated as independent
measurements. While some argue that many of the ails of spatial autocorrelation are typically
overstated (Hawkins, 2012), spatial data have unique and very interesting properties that
should be handled carefully. Non-independence is inherent to spatial data, driven both by
underlying ecological patterns and processes (e.g. dispersal, species interactions, climatic
covariance) as well as by data collection biases (e.g. occurrence records are common near roads
or trails despite many species typically preferring less fragmented habitats).

Spatial models should include methods for handling spatially-specific modeling paradigms,
particularly the lack of independence of nearby samples or spatial biases in sample density.
Quantifying and understanding model skill requires accounting for these spatial autocorre-
lations, and elapid includes several methods for doing so. Checkerboard cross-validation
can mitigate bias introduced by spatially clustered points. Creating spatially-explicit 𝑘-fold
splits—independent clusters based on x/y locations—can quantify how well model predictions
generalize to new areas. And tuning sample weights based on the density of nearby points
decreases the risk of overfitting to autocorellated environmental features from areas with high
sample density. This is particularly important for mitigating the effects of density-dependent
non-independence.

These methods are not solely restricted to the SDMs implemented in elapid. They can add
spatial context to other machine learning models, too. Geographic sample weights can be
used to fit random forests, boosted regression trees, generalized linear models, and other
approaches commonly used to predict spatial distributions. elapid also includes a series of
feature transformers, including the transformations used in Maxent, which can extend covariate
feature space to improve model skill.

elapid was designed to provide a series of modern tools for quantifying biodiversity change.
The target audience for the package includes ecologists, biodiversity scientists, spatial analysts
and machine learning scientists. Working with software to understand the rapid changes
reshaping our biosphere should be easy and enjoyable. Because thinking about the ongoing
annihilation of nature that’s driving our current extinction crisis is decidedly less so.
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Phillips, S. J., & Dudıḱ, M. (2008). Modeling of species distributions with Maxent: New
extensions and a comprehensive evaluation. Ecography, 31(2), 161–175. https://doi.org/
10.1111/j.0906-7590.2008.5203.x

Ploton, P., Mortier, F., Réjou-Méchain, M., Barbier, N., Picard, N., Rossi, V., Dormann,
C., Cornu, G., Viennois, G., Bayol, Nicolas, Lyapustin, A., Gourlet-Fleury, S., & Pélissier,
R. (2020). Spatial validation reveals poor predictive performance of large-scale ecolog-
ical mapping models. Nature Communications, 11(1), 4540. https://doi.org/10.1038/
s41467-020-18321-y

Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A., & Snyder, M. A. (2009). Niches,
models, and climate change: Assessing the assumptions and uncertainties. Proceedings of
the National Academy of Sciences, 106(supplement_2), 19729–19736. https://doi.org/10.
1073/pnas.0901639106

Anderson. (2023). elapid: Species distribution modeling tools for Python. Journal of Open Source Software, 8(84), 4930. https://doi.org/10.
21105/joss.04930.

5

https://doi.org/10.1111/ecog.03049
https://doi.org/10.1111/ecog.03049
https://doi.org/10.1111/j.0906-7590.2008.5203.x
https://doi.org/10.1111/j.0906-7590.2008.5203.x
https://doi.org/10.1038/s41467-020-18321-y
https://doi.org/10.1038/s41467-020-18321-y
https://doi.org/10.1073/pnas.0901639106
https://doi.org/10.1073/pnas.0901639106
https://doi.org/10.21105/joss.04930
https://doi.org/10.21105/joss.04930

	Summary
	Statement of need
	Why Maxent still matters
	Acknowledgments
	References

