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Summary
Machine Learning is at the forefront of scientific progress in Healthcare and Medicine. To
accelerate scientific discovery, it is important to have tools that allow progress iterations to be
collaborative, reproducible, reusable and easily built upon without “reinventing the wheel” for
each task.
FuseMedML, or fuse, is a Python framework designed for accelerated Machine Learning (ML)
based discovery in the medical domain. It is highly flexible and designed for easy collaboration,
encouraging code reuse. Flexibility is enabled by a generic data object design where data is
kept in a nested (hierarchical) Python dictionary (NDict), allowing to efficiently process and
fuse information from multiple modalities. Functional components allow to specify input and
output keys, to be read from and written to the nested dictionary.
Easy code reuse is enabled through key components implemented as standalone packages
under the main fuse repo using the same design principles. These include fuse.data - a flexible
data processing pipeline, fuse.dl - reusable Deep Learning (DL) model architecture components
and loss functions, and fuse.eval - a library for evaluating ML models.

Statement of need
Medical research often involves multiple modalities (e.g., imaging, clinical data, biochemical
representations) and tasks (e.g., classification, segmentation, clinical condition prediction). In
our experience working on numerous such projects, we have identified three key challenges: 1.
Setting up or implementing a new baseline model can be time-consuming, even when similar
projects have already been completed by the same lab. 2. Transferring individual components
across projects can be difficult, leading to researchers frequently “reinventing the wheel.” 3.
Collaborating between projects across modalities and domains, such as imaging and molecules,
is often challenging.

To address these challenges, FuseMedML was developed with the goal of simplifying and
streamlining medical research projects.

Before open sourcing it, we used fuse internally in multiple research projects (Raboh, Levanony,
et al., 2022), (Rabinovici-Cohen, Tlusty, et al., 2022), (Rabinovici-Cohen, Fernández, et al.,
2022), (Jubran et al., 2021), (Tlusty et al., 2021), (Golts et al., 2022), (Barros et al.) and
experienced significant improvement in development time, reusability and collaboration. We
were also able to meaningfully measure our progress and statistical significance of our results
with off-the-shelf fuse.eval components that facilitate metrics’ confidence interval calculation
and model comparison. These tools have enabled us to organize two challenges as part of the
2022 International Symposium on Biomedical Imaging (ISBI) (Raboh, Golts, et al., 2022),
(Pati et al., 2022).
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State of the field
FuseMedML is a comprehensive machine learning library that focuses on the biomedical domain.
It offers a range of tools covering the entire development process, including data preparation,
model training, and evaluation. Built on top of popular machine learning frameworks such as
PyTorch (Paszke et al., 2019) and PyTorch Lightning (Falcon & The PyTorch Lightning team,
2019), FuseMedML also includes flexible domain-specific capabilities to complement these
frameworks. Overall, FuseMedML aims to facilitate machine learning discoveries within the
healthcare and life science sectors. One way in which fuse can complement PyTorch is through
its generic design concept (See Figure 1) of storing arbitrary types of data in a specialized
nested dictionary. This is a key driver of flexibility, allowing minimal code modifications when
moving building blocks between different projects. Concretely, fuse has a dataset class that
extends the PyTorch dataset, and a model wrapper class that enables PyTorch models to
operate on batch_dicts rather than tensors.
In the case of PyTorch Lightning, fuse integrates with it directly as it builds upon its compre-
hensive trainer class, also allowing users to define their models and data modules in PyTorch
Lightning style, with flexible levels of customizability.

Figure 1: This figure illustrates FuseMedML’s design concept. A fuse component is instantiated with
input and output keys. These keys refer to the sample_dict, the basic data sample structure of fuse
represented by a special nested Python dictionary called “NDict”.

There are existing PyTorch-based ML libraries that similarly to fuse cater to researchers in
the biomedical domain. Two examples of such prominent libraries are MONAI (Cardoso et
al., 2022) and PyHealth (Zhao et al., 2021). MONAI is primarily focused on medical imaging
applications. PyHealth on the other hand mainly focuses on health records data. fuse is
designed to support different types of medical data and multimodal use cases involving imaging,
clinical and biochemical data.
As with generic ML frameworks like PyTorch and PyTorch Lightning, fuse can also coexist
with the more specific libraries like MONAI, PyHealth or others. A user may opt to borrow
parts from different libraries and complement them with components from fuse. As another
example, a user may want to use the data ops of fuse which are generic and flexible, or its data
caching mechanism, which allows to separate processing into a static and dynamic pipelines,
controlling the desired stages to be cached.

Packages

fuse.data
FuseMedML’s data package is designed for building a flexible and powerful data pipeline with
reusable building blocks called ops. See Figure 2 for a simple example for how such a building
block can be used across different projects.
Each op class’s __call__ function gets as an input a sample_dict, a dictionary that stores
all the necessary information about a sample processed so far. Typically, an op’s constructor
gets keys that specify what it should consider in sample_dict and where to store the output.
Similarly, a minibatch is represented by a batch_dict.
A special kind of ops are “Meta ops”. They can be thought of as a form of wrapper op around
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a regular, lower level op or function, to help achieve a special behavior such as repeating that
low level op, applying it with random values and more. “Meta ops” also help avoid writing
boilerplate code.

A data pipeline may consist of a static_pipeline and a dynamic_pipeline. The output
of the static_pipeline can be cached to optimize running time and GPU utilization. The
dynamic_pipeline is responsible for “online” processing that we don’t want to cache, such as
random augmentations. An instance of a fuse dataset class, which inherits from the PyTorch
dataset class is then created from defined static and dynamic pipelines.
The data package also includes generic utilities such as a PyTorch based sampler enabling
batch class balancing and a tool for splitting data into folds according to predefined criteria.

Figure 2: In this example a medical image loader is the fuse component reused in projects A and B.
Different projects can have different formats for their data samples, but they can all use OpMedicalIm-
ageLoader by providing the appropriate key names when calling it. In Project B the same key name
is used for the input and output, resulting in the loaded image data overriding the image paths in the
updated sample.

fuse.dl
FuseMedML’s DL package works with PyTorch models, only modifying them to interact with
a batch_dict. For training, fuse.dl utilizes PyTorch-Lightning, either through an already
made LightningModuleDefault class that inherits from Pytorch-Lightning’s LightningModule
class, or by allowing users who seek maximal customizability to implement their own custom
LightningModule and operate in close resemblance to the standard PyTorch-Lightning work-
flow or use alternative training loop implementations.
fuse.dl also offers generic core DL components such as model architectures and losses, imple-
mented in fuse style. See an example model architecture definition in Figure 3.
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Figure 3: In this example a model architecture is defined using the ModelMultiHead class. It contains
of a 3D ResNet backbone represented by the BackboneResnet3D class and a 3D classification head
represented by the Head3D class. Note the user can define a list of heads, to support a multi task use case.
The inputs to the backbone and classification heads are defined in the fuse style described earlier, using
the batch_dict key names with the relevant data. This enables easy reuse of similar model architectures
between projects.

fuse.eval
FuseMedML’s evaluation package is a standalone library for evaluating machine learning
models using various performance metrics and comparing the results between models. It offers
advanced capabilities such as a generic confidence interval wrapper for any metric, a generic
one-versus-all extension for converting any binary metric to a multi-class scenario, and metrics
for comparing models while considering statistical significance. The package also includes
model calibration tools and a pipeline for combining a sequence of metrics with possible
dependencies. In addition, the evaluation package supports automatic per-fold evaluation and
subgroup analysis, and can handle large data sets through batching and multiprocessing. See
Figure 4 for an example of an evaluation metric pipeline that can be reused across projects.

Figure 4: In this example a pipeline of evaluation metric components is shown. It consists of two metrics:
the Area Under the receiver operating characteristic Curve and the Area Under the Precision-Recall
Curve. Both metrics are wrapped with a Confidence Interval (CI) metric, resulting in a lower and upper
bound for each metric. The metrics are executed by an instance of the EvaluatorDefault class, the basic
fuse.eval class that combines input sources, evaluates using the specified metrics, generates a report and
returns a dictionary with all the metrics results.
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Extensions
The core technology of FuseMedML and its component packages is general, while domain-
specific functionality is contained within extensions. One such extension, fuse-imaging, is
currently available and extends the FuseMedML data package with operations useful for medical
imaging, as well as implementations of public medical datasets.
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