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Summary
Neutrino telescopes, such as ANTARES (ANTARES Collaboration, 2011b), IceCube (IceCube
Collaboration, 2012, 2017), KM3NeT (KM3NeT Collaboration, 2016), and Baikal-GVD (Baikal-
GVD Collaboration, 2018) have the science goal of detecting neutrinos and measuring their
properties and origins. Reconstruction at these experiments is concerned with classifying the
type of event or estimating properties of the interaction.

GraphNeT (Søgaard et al., 2023) is an open-source Python framework aimed at providing high
quality, user friendly, end-to-end functionality to perform reconstruction tasks at neutrino
telescopes using graph neural networks (GNNs). GraphNeT makes it fast and easy to train
complex models that can provide event reconstruction with state-of-the-art performance, for
arbitrary detector configurations, with inference times that are orders of magnitude faster than
traditional reconstruction techniques (IceCube Collaboration, 2022a).

GNNs from GraphNeT are flexible enough to be applied to data from all neutrino telescopes,
including future projects such as IceCube extensions (IceCube-Gen2 Collaboration, 2017, 2021;
IceCube-PINGU Collaboration, 2014) or P-ONE (P-ONE Collaboration, 2020). This means
that GNN-based reconstruction can be used to provide state-of-the-art performance on most
reconstruction tasks in neutrino telescopes, at real-time event rates, across experiments and
physics analyses, with vast potential impact for neutrino and astro-particle physics.

Statement of need
Neutrino telescopes typically consist of thousands of optical modules (OMs) to detect the
Cherenkov light produced from particle interactions in the detector medium. The number
of photo-electrons recorded by the OMs in each event roughly scales with the energy of the
incident particle, from a few photo-electrons and up to tens of thousands.

Reconstructing the particle type and parameters from individual recordings (called events) in
these experiments is a challenge due to irregular detector geometry, inhomogeneous detector
medium, sparsity of the data, the large variations of the amount of signal between different
events, and the sheer number of events that need to be reconstructed.

Multiple approaches have been employed, including relatively simple methods (ANTARES
Collaboration, 2011a; IceCube Collaboration, 2022b) that are robust but limited in precision and
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likelihood-based methods (Aartsen & others, 2014; Abbasi et al., 2013; AMANDA Collaboration,
2004; ANTARES Collaboration, 2017; Chirkin, 2013; IceCube Collaboration, 2014, 2021b,
2022b) that can attain a high accuracy at the price of high computational cost and detector
specific assumptions.

Recently, machine learning (ML) methods have started to be used, such as convolutional
neural networks (CNNs) (IceCube Collaboration, 2021a; KM3NeT Collaboration, 2020) that
are comparatively fast, but require detector data being transformed into a regular pixel or voxel
grid. Other approaches get around the geometric limitations, but increase the computational
cost to a similar level as the traditional likelihood methods (Eller et al., 2022).

Instead, GNNs can be thought of as generalised CNNs that work on data with any geometry,
making this paradigm a natural fit for neutrino telescope data.

The GraphNeT framework provides the end-to-end tools to train and deploy GNN reconstruction
models. GraphNeT leverages industry-standard tools such as pytorch (Paszke et al., 2019),
PyG (Fey & Lenssen, 2019), lightning (Falcon & The PyTorch Lightning team, 2019), and
wandb (Biewald, 2020) for building and training GNNs as well as particle physics standard
tools such as awkward (Pivarski et al., 2020) for handling the variable-size data representing
particle interaction events in neutrino telescopes. The inference speed on a single GPU allows
for processing the full online datastream of current neutrino telescopes in real-time.

Impact on physics
GraphNeT provides a common framework for ML developers and physicists that wish to use
the state-of-the-art GNN tools in their research. By uniting both user groups, GraphNeT aims
to increase the longevity and usability of individual code contributions from ML developers by
building a general, reusable software package based on software engineering best practices,
and lowers the technical threshold for physicists that wish to use the most performant tools
for their scientific problems.

The GraphNeT models can improve event classification and yield very accurate reconstruction,
e.g., for low energy neutrinos observed in IceCube. Here, a GNN implemented in GraphNeT was
applied to the problem of neutrino oscillations in IceCube, leading to significant improvements
in both energy and angular reconstruction in the energy range relevant to oscillation studies
(IceCube Collaboration, 2022a). Furthermore, it was shown that the GNN could improve muon
vs. neutrino classification and thereby the efficiency and purity of a neutrino sample for such
an analysis.

Similarly, improved angular reconstruction has a great impact on, e.g., neutrino point source
analyses.

Finally, the fast (order millisecond) reconstruction allows for a whole new type of cosmic
alerts at lower energies, which were previously unfeasible. GNN-based reconstruction makes it
possible to identify low energy (< 10 TeV) neutrinos and monitor their rate, direction, and
energy in real-time. This will enable cosmic neutrino alerts based on such neutrinos for the
first time ever, despite a large background of neutrinos that are not of cosmic origin.

Usage
GraphNeT comprises a number of modules providing the necessary tools to build workflows
from ingesting raw training data in domain-specific formats to deploying trained models in
domain-specific reconstruction chains, as illustrated in Figure 1.
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Figure 1: High-level overview of a typical workflow using GraphNeT: graphnet.data enables con-
verting domain-specific data to industry-standard, intermediate file formats and reading this data;
graphnet.models allows for configuring and building complex GNN models using simple, physics-
oriented components; graphnet.training manages model training and experiment logging; and finally,
graphnet.deployment allows for using trained models for inference in domain-specific reconstruction
chains.

graphnet.models provides modular components subclassing torch.nn.Module, meaning that
users only need to import a few existing, purpose-built components and chain them together
to form a complete GNN. ML developers can contribute to GraphNeT by extending this suite of
model components — through new layer types, physics tasks, graph connectivities, etc. — and
experiment with optimising these for different reconstruction tasks using experiment tracking.

These models are trained using graphnet.training on data prepared using graphnet.data,
to satisfy the high I/O loads required when training ML models on large batches of events,
which domain-specific neutrino physics data formats typically do not allow.

Trained models are deployed to a domain-specific reconstruction chain, yielding predictions,
using the components in graphnet.deployment. This can either be through model files or
container images, making deployment as portable and dependency-free as possible.

By splitting up the GNN development as in Figure 1, GraphNeT allows physics users to interface
only with high-level building blocks or pre-trained models that can be used directly in their
reconstruction chains, while allowing ML developers to continuously improve and expand the
framework’s capabilities.
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