
SigCorr: A Python package for studies of trials factors

V. Ananiev 1* and A. L. Read 1*¶

1 Department of Physics, University of Oslo, Boks 1072 Blindern, Oslo, NO-0316, Norway ¶
Corresponding author * These authors contributed equally.

DOI: 10.21105/joss.04989

Software
• Review
• Repository
• Archive

Editor: Øystein Sørensen
Reviewers:

• @BSGalvan
• @peifengjing
• @gvieralopez

Submitted: 09 November 2022
Published: 07 July 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
The Trials factor (TF) is a generalization of the Bonferroni correction for the significance of
repeated experiments. In a likelihood ratio scan that searches for the most significant peak of
signal amplitude as a function of some parameter, e.g. the mass of a hypothetical particle,
repeated experiments emerge effectively due to the localized nature of the hypothetical signal.
The trials factor in such a search is the ratio between the probability of observing such an
excess anywhere in the scanned search region to the probability of observing the excess at the
point of maximum observed significance. For a more detailed introduction of the TF, we refer
the reader to the work of Gross and Vitells (Gross & Vitells, 2010).

There are several ways to estimate the trials factor or an upper bound for it. Most of the
approaches require a number of samples from the background distribution (Monte Carlo (MC)
toys) to be generated and fitted with a statistical model. This procedure is separated in the
upper block of Figure 1, mainly because it is the most time-consuming part of the analysis.

The lower block in Figure 1 shows various ways to estimate the trials factor from the fitted
MC toys. When expressed as a pipeline, each way can be assembled from some simple building
blocks, the implementation of which is at the core of SigCorr.

The communication between the upper (fitting) and the lower (analysis) components is
conducted via HDF5 files with a well defined structure, which can be referred to in the
documentation of SigCorr (Ananiev & Read, 2023a). Such a weak coupling allows to easily
replace parts of the pipeline with more efficient tools if needed.

Ananiev, & Read. (2023). SigCorr: A Python package for studies of trials factors. Journal of Open Source Software, 8(87), 4989. https:
//doi.org/10.21105/joss.04989.

1

https://orcid.org/0000-0003-3649-7621
https://orcid.org/0000-0002-5751-6636
https://doi.org/10.21105/joss.04989
https://github.com/openjournals/joss-reviews/issues/4989
https://gitlab.com/sigcorr/sigcorr
https://doi.org/10.5281/zenodo.8096892
https://osorensen.rbind.io/
https://orcid.org/0000-0003-0724-3542
https://github.com/BSGalvan
https://github.com/peifengjing
https://github.com/gvieralopez
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04989
https://doi.org/10.21105/joss.04989

Figure 1: Various ways to estimate the trials factor.

SigCorr is a framework that implements a wide range of tools and was developed to simplify
the process of construction of the pipelines shown above, and, therefore, to make studies of
the global significance or a trials factor a straightforward exercise. It is worth mentioning,
though, that the figure above is not exhaustive. We believe there are more ways to approach
the trials factor, and some of them may also be possible to implement with the tools provided
by SigCorr!

The project has a hybrid structure:

• From the perspective of fitting the Monte Carlo toys, it is a framework. Users will
have to implement their own statistical models following the guides and examples in the
documentation.

• From the perspective of analysis of the fitted toys, however, SigCorr is a Swiss Army
knife that assembles into one tool the knowledge from the frequently cited HEP papers
that studied statistical hypothesis testing and the trials factor (Cowan et al., 2011; Gross
& Vitells, 2010; Vitells & Gross, 2011).

Statement of need
In high-energy physics it is a recurring challenge to efficiently and precisely (enough) calculate
the global significance of, e.g., a potential new resonance. The Gross and Vitells trials factor
approximation (Gross & Vitells, 2010) and (Vitells & Gross, 2011) is based on the average
“up-crossings” of the significance in the search region, or generally on the average Euler
characteristic of the set of significance measurements that exceed the threshold of the local
significance. It has revolutionized the trials factor estimation for significances above 3 standard
deviations, but the challenges of actually calculating the average up-crossings and the validity
of the approximation for smaller significances remain.

In Ananiev & Read (2023b) a new method was proposed. It models the significance in
the search region as a Gaussian process (GP). The method was developed to overcome the
limitations of the Gross and Vitells approach via replacing expensive MC fits with lightweight
GP toys.

Up-crossings, Euler characteristic and Gaussian processes are commonly relied on in this field
of research. When studied together, they have many useful properties for the estimation of

Ananiev, & Read. (2023). SigCorr: A Python package for studies of trials factors. Journal of Open Source Software, 8(87), 4989. https:
//doi.org/10.21105/joss.04989.

2

https://doi.org/10.21105/joss.04989
https://doi.org/10.21105/joss.04989

trials factors. SigCorr is the first project that assembles all of them into one Python package,
that also includes the tools for parallel analysis of the MC toys and GP toys in a unified fashion.
Together with the fitting framework it allows the path from the statistical model definition to
a TF estimate to be travelled.

SigCorr is a framework developed with a goal to cover a wide range of use cases for TF
estimates. There are, however, popular and well-maintained packages which cover some
aspects of this process. For example, RooFit (Verkerke & Kirkby, 2006) and PyHF (Heinrich et
al., n.d.), which are widely used in particle physics, may significantly replace or augment the
part of SigCorr that is responsible for optimizing the likelihoods of the statistical models. The
pyBumpHunter package (Vaslin & Donini, 2023) may help with brute force estimates of the TF.

Although SigCorr covers just simplified versions of all the above, it also implements validated
approximations and asymptotics for fast computations of the TF and its upper bound based on
classical papers in the field. The possibility of doing this in a modular but consistent fashion
makes SigCorr unique in the field, and will allow users to try different methods (Figure 1),
cross-validate and choose or construct the most suitable approach to their analysis.

Examples of use
Average Euler characteristic propagation

For the Gaussian process field, for any chosen threshold on the field values, one can define
a set of points above this threshold. The Euler characteristic of this set gives an estimation
of the number of peaks above the threshold, which is a very important characteristic of the
Gaussian process for the Trials factor studies.

A Gaussian process has a property that the average Euler characteristic at any threshold is
a simple function of a few reference Euler characteristic values and the threshold (Vitells &
Gross, 2011). The number of reference values required depends on the dimensionality of the
Gaussian field.

Here is how to estimate the average Euler characteristic for arbitrary thresholds with SigCorr,
knowing 2 reference values for a 2-dimensional Gaussian field:

import numpy as np

from sigcorr.tools.stats.gp.euler_number import GPEulerNumberPropagator

2D Gaussian process requires 2 reference values

ref_thresholds = np.array([1, 2.])

ref_euler_nums = np.array([3.2, 1.2])

target_thresholds = np.array([0.5, 1.5, 2.5])

euler_number_propagator = GPEulerNumberPropagator(ref_thresholds,

ref_euler_nums)

target_euler_numbers = euler_number_propagator.calc(target_thresholds)

array([3.10791656, 2.29280228, 0.46934814])

Batched statistics

When the number of samples is known in advance but not all samples are available at the
moment (e.g. they don’t fit into RAM), it is still possible to estimate mean, variance, covariance
and statistical errors by processing the samples in batches.

import numpy as np

from sigcorr.tools.stats.batch_stats import BatchStats2

n_samples = 3

one_sample_shape = 2

samples = np.array([[1, 2], [2, 3], [3., 4.]])

Ananiev, & Read. (2023). SigCorr: A Python package for studies of trials factors. Journal of Open Source Software, 8(87), 4989. https:
//doi.org/10.21105/joss.04989.

3

https://doi.org/10.21105/joss.04989
https://doi.org/10.21105/joss.04989

bs = BatchStats2(n_samples, one_sample_shape)

bs.push(samples[:1]) # push first batch

bs.push(samples[1:]) # push second batch

sample mean

mean = bs.get_mean()

array([2., 3.])

sample variance

variance = bs.get_var()

array([0.66666667, 0.66666667])

covariance matrix between observables

covariance = bs.get_cov()

array([[0.66666667, 0.66666667],

[0.66666667, 0.66666667]])

variance of the covariance matrix between observables,

can be used to estimate statistical errors

on the sample covariance estimate

covariance_variance = bs.get_cov_var()

array([[0.22222222, 0.22222222],

[0.22222222, 0.22222222]])

Statistical analysis of GP samples (parallel)

A set of standard normal random variables when squared follow a chi-squared distribution
with 1 degree of freedom. One can see the analogy with a test statistic curve emerging from
a likelihood scan. If we ask the question, what is the fraction of curves that exceed some
threshold, this would resemble the procedure used to estimate the trials factor via brute force.
Below we estimate the fraction of test statistic curves that exceed the threshold 1.2.

import numpy as np

from sigcorr.mapreduce.gp import gp_batch_mapreduce

from sigcorr.tools.utils import get_last_from_iter

from sigcorr.mapreduce.map_reducers import ChainCalc

from sigcorr.mapreduce.map_reducers import MathCalc

from sigcorr.mapreduce.map_reducers import OverflowsCalc

from sigcorr.mapreduce.map_reducers import BatchStats1Reduce

cov = np.eye(3) + 0.1

result_iterator = gp_batch_mapreduce(

cov, # covariance matrix of the GP

100, # number of GP samples

10, # batch size

(3,), # sample shape

ChainCalc([MathCalc(np.square), OverflowsCalc(1.2)]), # apply to every batch

BatchStats1Reduce()) # aggregate

resulting_bs, num_processed = get_last_from_iter(result_iterator)

resulting_bs.get_mean()

Here, ChainCalc, MathCalc, OverflowsCalc are building blocks of the pipeline used to square
the GP sample and then to set the value 0 or 1 per curve in the batch depending on whether
the curve exceeds the threshold 1.2. There are other building blocks that, for example, help
to estimate the significance from the maximum likelihood values (SigsCalc), or to compute
the Euler characteristic of the batch of samples (EulerNumberCalc), etc.

Ananiev, & Read. (2023). SigCorr: A Python package for studies of trials factors. Journal of Open Source Software, 8(87), 4989. https:
//doi.org/10.21105/joss.04989.

4

https://doi.org/10.21105/joss.04989
https://doi.org/10.21105/joss.04989

Acknowledgements
We would like to thank Ofer Vitells for several very helpful discussions, in particular about the
details of the statistical model in the Gross and Vitells paper, the implementation of which
became a part of the SigCorr package to serve as one of the examples of its use. We would
also like to acknowledge the support of the ATLAS Collaboration. This research was supported
by the European Union Framework Programme for Research and Innovation Horizon 2020
(2014–2021) under the Marie Sklodowska-Curie Grant Agreement No.765710.

References
Ananiev, V., & Read, A. L. (2023a). Documentation and examples for SigCorr. https:

//sigcorr.gitlab.io/sigcorr/latest/

Ananiev, V., & Read, A. L. (2023b). Gaussian process-based calculation of look-elsewhere trials
factor. Journal of Instrumentation, 18(05), P05041. https://doi.org/10.1088/1748-0221/
18/05/P05041

Cowan, G., Cranmer, K., Gross, E., & Vitells, O. (2011). Asymptotic formulae for likelihood-
based tests of new physics. The European Physical Journal C, 71(2). https://doi.org/10.
1140/epjc/s10052-011-1554-0

Gross, E., & Vitells, O. (2010). Trial factors for the look elsewhere effect in high energy
physics. The European Physical Journal C, 70(1-2), 525–530. https://doi.org/10.1140/
epjc/s10052-010-1470-8

Heinrich, L., Feickert, M., & Stark, G. (n.d.). Pyhf. https://doi.org/10.5281/zenodo.1169739

Vaslin, L., & Donini, J. (2023). pyBumpHunter. In GitHub repository. https://github.com/
scikit-hep/pyBumpHunter; GitHub.

Verkerke, W., & Kirkby, D. (2006, May). The RooFit Toolkit for data modeling. Statistical
Problems in Particle Physics, Astrophysics and Cosmology. https://doi.org/10.1142/
9781860948985_0039

Vitells, O., & Gross, E. (2011). Estimating the significance of a signal in a multi-dimensional
search. Astroparticle Physics, 35(5), 230–234. https://doi.org/10.1016/j.astropartphys.
2011.08.005

Ananiev, & Read. (2023). SigCorr: A Python package for studies of trials factors. Journal of Open Source Software, 8(87), 4989. https:
//doi.org/10.21105/joss.04989.

5

https://sigcorr.gitlab.io/sigcorr/latest/
https://sigcorr.gitlab.io/sigcorr/latest/
https://doi.org/10.1088/1748-0221/18/05/P05041
https://doi.org/10.1088/1748-0221/18/05/P05041
https://doi.org/10.1140/epjc/s10052-011-1554-0
https://doi.org/10.1140/epjc/s10052-011-1554-0
https://doi.org/10.1140/epjc/s10052-010-1470-8
https://doi.org/10.1140/epjc/s10052-010-1470-8
https://doi.org/10.5281/zenodo.1169739
https://github.com/scikit-hep/pyBumpHunter
https://github.com/scikit-hep/pyBumpHunter
https://doi.org/10.1142/9781860948985_0039
https://doi.org/10.1142/9781860948985_0039
https://doi.org/10.1016/j.astropartphys.2011.08.005
https://doi.org/10.1016/j.astropartphys.2011.08.005
https://doi.org/10.21105/joss.04989
https://doi.org/10.21105/joss.04989

	Summary
	Statement of need
	Examples of use
	Acknowledgements
	References

