
Pyccel: a Python-to-X transpiler for scientific
high-performance computing

Emily Bourne 1*, Yaman Güçlü 2*¶, Said Hadjout 2,3*, and Ahmed
Ratnani 4*

1 CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France 2 NMPP division, Max-Planck-Institut für
Plasmaphysik, Garching bei München, Germany 3 Dept. of Mathematics, Technische Universität
München, Garching bei München, Germany 4 Lab. MSDA, Mohammed VI Polytechnic University,
Benguerir, Morocco ¶ Corresponding author * These authors contributed equally.

DOI: 10.21105/joss.04991

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @aholmes
• @IgorBaratta
• @boegel

Submitted: 01 December 2022
Published: 09 March 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
The Python programming language has gained significant popularity in scientific computing
and data science, mainly because it is easy to learn and provides many scientific libraries,
including parallel ones. While these libraries are very fast, they are usually written in compiled
languages such as Fortran and C/C++. User code written in pure Python is usually much
slower; because Python is a dynamically typed language which introduces overhead in many
basic operations. Due to this limitation, one often needs to rewrite the computational parts of
their Python code in a statically typed language to take full advantage of optimization and
acceleration techniques. This expensive process happens naturally during the transition from a
prototype to a production code, which is the principal bottleneck in scientific computing. We
believe that such a bottleneck can be resolved, or at least drastically reduced, through the use
of automatic code generation tools.

In this work we present Pyccel, a Python library which acts as a transpiler by translating
Python code to either Fortran or C code, and as an accelerator by making the generated code
callable from Python once again. Not only is the Pyccel-generated Fortran or C code very
fast, but it is human-readable; hence an expert programmer can easily profile the code on the
target machine and further optimize it. Pyccel provides a variety of methods for the efficient
usage of the available hardware resources, such as type annotations, function decorators, and
OpenMP pragmas. Moreover, Pyccel allows the user to link their code to external libraries
written in the target language.

Statement of need
Different approaches have been proposed to accelerate computation-intensive parts of Python
code. Cython (Behnel et al., 2011), one of the first tools of this kind, allows the user to call
the Python C API by introducing a static typing approach. However, the user must rewrite
their code into a hybrid Python-C language in order to remove expensive Python callbacks
from the generated C code. As a result, the code can no longer be executed using the Python
interpreter alone. A more recent tool is Pythran (Guelton et al., 2015), which allows dynamic
Python code to be converted into static C++ code by providing types as comments. The
HOPE (Akeret et al., 2015) library provides a just-in-time (JIT) compiler to convert Python
code to C++, where the arguments’ types are only known at execution time. Numba (T.
Olifant et al., n.d.) follows the same idea of bringing JIT compiling to Python by generating
machine code based on LLVM, which can run on either CPUs or GPUs. Both Numba and
HOPE rely heavily on the use of simple decorators to instruct the Python package to compile

Bourne et al. (2023). Pyccel: a Python-to-X transpiler for scientific high-performance computing. Journal of Open Source Software, 8(83), 4991.
https://doi.org/10.21105/joss.04991.

1

https://orcid.org/0000-0002-3469-2338
https://orcid.org/0000-0003-2619-5152
https://orcid.org/0000-0003-3878-3146
https://orcid.org/0000-0001-9035-1231
https://doi.org/10.21105/joss.04991
https://github.com/openjournals/joss-reviews/issues/4991
https://github.com/pyccel/pyccel/
https://doi.org/10.5281/zenodo.7711108
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/aholmes
https://github.com/IgorBaratta
https://github.com/boegel
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04991


a given function. They also use the type information available at runtime to generate byte
code. A different approach is given by PyPy (Bolz et al., 2009), a Python interpreter written
in an internal language called RPython (which is a restricted subset of the Python language
itself). The aim of PyPy is to provide speed and efficiency at runtime using a JIT compiler.

To the authors’ knowledge, of all the different methods used to accelerate Python codes, none
so far generate human-readable code. In this work, we present a new Python static compiler
named Pyccel that combines a transpiler with a Python/C API to create an accelerator. This
approach has two main advantages. Firstly, it gives the user the option of further optimising
the code in the low-level language with the help of HPC specialists. Secondly, it allows the
user to choose the language most adapted to their problem or system. For example, Fortran is
a language designed for scientific programming and is tailored for efficient runtime execution
on a wide variety of processors. The compiler is therefore highly effective for array handling in
the context of scientific programming. In contrast, the C compiler is better adapted to support
GPU tools such as CUDA and OpenACC.

Pyccel is designed for two different use cases: (1) accelerate Python code by converting it to
Fortran and providing a CPython wrapper to interface between the low-level and high-level
languages, and (2) generate low-level C or Fortran code from Python code. The latter case
follows from the fact that the code is human-readable. This means that Pyccel can also be
used to simplify the process of going from a prototype (which is often written in inefficient
languages that are quick to write) to production code (written in a low-level language). To this
end, Pyccel is designed to allow the use of low-level legacy codes and some Python scientific
libraries such as NumPy, SciPy, etc.

Benchmarks
A few example codes are used to provide an indication of the performance of Pyccel as
compared to the popular accelerators Numba and Pythran. The source code can be found
in github.com/pyccel/pyccel-benchmarks. These examples, which illustrate several common
scientific computing problems, are based on open-source code samples (Barba, n.d.; Burkardt,
n.d.). All tests were run in single-threaded mode on a CPU compute node of the HPC system
Raven (Max Planck Computing and Data Facility, n.d.), featuring an Intel Xeon IceLake-SP
8360Y processor with 72 cores and 256 GB of RAM. The tests were run with Python 3.9.7
on Ubuntu SUSE Linux Enterprise Server 15 SP3, using Pyccel 1.7.2, Numba 0.56.4, and
Pythran 0.12.1. The following flags were passed to GCC 12.1.0 via Pyccel and Pythran : -O3

-march=native -mtune=native -mavx. The Numba test cases were compiled using the @njit

decorator.

Figure 1 shows the time required to execute the accelerated code for these test cases. We
see that Pyccel is highly competitive in all cases, but unfortunately Pyccel’s C printing is
slightly less developed than the Fortran printer, leading to less performant code. The finite
difference Laplace test case (FD-Laplace) relies heavily on NumPy vectorized expression, and
is the hardest to optimize for all accelerators. In this test only Pyccel can provide a substantial
speedup (about 68%) using Fortran as a backend language; Pythran and Pyccel (C) provide a
marginal speedup of 13% and 4%, respectively, while Numba is slower than the original Python
code.

Bourne et al. (2023). Pyccel: a Python-to-X transpiler for scientific high-performance computing. Journal of Open Source Software, 8(83), 4991.
https://doi.org/10.21105/joss.04991.

2

github.com/pyccel/pyccel-benchmarks
https://doi.org/10.21105/joss.04991


Figure 1: Comparison of speed-up compared to Python, obtained using accelerated code for various test
cases executed with Python 3.9.7

Another important consideration is the time spent waiting for the accelerated version to be
generated. This is shown in Figure 2, where Pyccel proves to be competitive with Numba
while it significantly outperforms Pythran for large files.

Figure 2: Comparison of times required to generate accelerated code for various test cases with Python
3.9.7

Acknowledgments
The authors would like to thank all the people who have contributed to Pyccel so far. The
project has received funding from the European Union’s Horizon 2020 Research and Innovation
Program under Grant Agreement No. 800945 (Numerics PhD Program), and under Grant
Agreement No. 676629 (Energy oriented Centre of Excellence for computing applications -
EoCoE).

References
Akeret, J., Gamper, L., Amara, A., & Refregier, A. (2015). HOPE: A Python just-in-time

compiler for astrophysical computations. Astron. Comput., 10, 1–8. https://doi.org/10.
1016/j.ascom.2014.12.001

Barba, L. A. (n.d.). https://lorenabarba.com/blog/cfd-python-12-steps-to-navier-stokes/.

Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S., & Smith, K. (2011). Cython:
The best of both worlds. Comput Sci Eng, 13(2), 31–39. https://doi.org/10.1109/MCSE.
2010.118

Bolz, C. F., Cuni, A., Fijalkowski, M., & Rigo, A. (2009). Tracing the meta-level: PyPy’s
tracing JIT compiler. Proceedings of the 4th Workshop on the Implementation, Compilation,

Bourne et al. (2023). Pyccel: a Python-to-X transpiler for scientific high-performance computing. Journal of Open Source Software, 8(83), 4991.
https://doi.org/10.21105/joss.04991.

3

https://doi.org/10.1016/j.ascom.2014.12.001
https://doi.org/10.1016/j.ascom.2014.12.001
https://lorenabarba.com/blog/cfd-python-12-steps-to-navier-stokes/
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.21105/joss.04991


Optimization of Object-Oriented Languages and Programming Systems, 18–25. https:
//doi.org/10.1145/1565824.1565827

Burkardt, J. (n.d.). https://people.sc.fsu.edu/~jburkardt/py_src/py_src.html.

Guelton, S., Brunet, P., Amini, M., Merlini, A., Corbillon, X., & Raynaud, A. (2015). Pythran:
enabling static optimization of scientific Python programs. Comput. Sci. Discov., 8(1),
014001. https://doi.org/10.1088/1749-4680/8/1/014001

Max Planck Computing and Data Facility. (n.d.). The supercomputer Raven. https://www.
mpcdf.mpg.de/services/supercomputing/raven.

T. Olifant et al. (n.d.). Numba. http://numba.pydata.org.

Bourne et al. (2023). Pyccel: a Python-to-X transpiler for scientific high-performance computing. Journal of Open Source Software, 8(83), 4991.
https://doi.org/10.21105/joss.04991.

4

https://doi.org/10.1145/1565824.1565827
https://doi.org/10.1145/1565824.1565827
https://people.sc.fsu.edu/~jburkardt/py_src/py_src.html
https://doi.org/10.1088/1749-4680/8/1/014001
https://www.mpcdf.mpg.de/services/supercomputing/raven
https://www.mpcdf.mpg.de/services/supercomputing/raven
http://numba.pydata.org
https://doi.org/10.21105/joss.04991

	Summary
	Statement of need
	Benchmarks
	Acknowledgments
	References

