
DeBEIR: A Python Package for Dense Bi-Encoder
Information Retrieval
Vincent Nguyen 1,2, Sarvnaz Karimi 2, and Zhenchang Xing 1,2

1 Australian National University, School of Computing 2 Commonwealth Scientific and Industrial
Research Organisation, Data61

DOI: 10.21105/joss.05017

Software
• Review
• Repository
• Archive

Editor: Arfon Smith
Reviewers:

• @KonradHoeffner
• @amitkumarj441

Submitted: 17 October 2022
Published: 05 July 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Information Retrieval (IR) is the task of retrieving documents given a query or information
need. These documents are retrieved and ranked based on a relevance function or relevance
model such as Best-Matching 25 (BM25) (Robertson et al., 1995). Although deep learning
has been successful in other computer science fields, such as computer vision with AlexNet
(Krizhevsky et al., 2012) and Inception (Szegedy et al., 2014) and natural language processing
with transformers (Devlin et al., 2019; Lee et al., 2019; Yang Liu & Lapata, 2019); success
in information retrieval was limited due to comparisons against weak baselines (Yang et al.,
2019). However, in 2019 (Lin, 2019), deep learning in information retrieval could surpass less
computationally intensive keyword-based statistical models in terms of retrieval effectiveness,
sparking a resurgence in the field of dense retrieval. Dense retrieval is the task of retrieving
documents given a query or information need using a dense vector representation of the query
and documents (Lin et al., 2021). The dense vector representation is obtained by passing the
query and documents through a neural network. The neural network is usually a pre-trained
language model such as BERT (Devlin et al., 2019) or RoBERTa (Yinhan Liu et al., 2019).
The dense query vector representation is then used to retrieve documents using a similarity
function such as cosine similarity.

Unlike statistical learning, tuning deep learning retrieval methods is often costly and time-
consuming. This cost makes it essential to efficently automate much of the training, tuning
and evaluation processes.

We present DeBEIR a library for: (1) facilitating dense retrieval research, primarily focusing on
bi-encoder dense retrieval where query and documents dense vectors are generated separately
(Reimers & Gurevych, 2019), (2) expedited experimentation in dense retrieval research by
reducing boilerplate code through an interchangeable pipeline API and code extendability
through the inheritance of general classes; (3) abstractions for standard training loops and
hyperparameter tuning from easy-to-define configuration files.

DeBEIR is aimed at helping practitioners, researchers and data scientists experimenting with
bi-encoders by providing them with dense retrieval methods that are easy to use out of the box
but also have additional extendability for more nuanced research. Furthermore, our pipeline
runs asynchronously to reduce I/O performance bottlenecks, facilitating faster experiments
and research.

A brief summary of the pipeline is (Figure 2):

1. Configuration based on Tom’s Obvious Minimal Language (TOML) files; these are loaded
in a class factory to create pipeline objects.

2. An executor object takes in a query builder object. The purpose of the query builder
object is to define the mapping of the documents and which parts of the query to use
for query execution.

Nguyen et al. (2023). DeBEIR: A Python Package for Dense Bi-Encoder Information Retrieval. Journal of Open Source Software, 8(87), 5017.
https://doi.org/10.21105/joss.05017.

1

https://orcid.org/0000-0003-1787-8090
https://orcid.org/0000-0002-4927-3937
https://orcid.org/0000-0001-7663-1421
https://doi.org/10.21105/joss.05017
https://github.com/openjournals/joss-reviews/issues/5017
https://github.com/Ayuei/DeBEIR
https://doi.org/10.5281/zenodo.8103783
http://arfon.org/
https://orcid.org/0000-0002-3957-2474
https://github.com/KonradHoeffner
https://github.com/amitkumarj441
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05017

3. The executor object asynchronously runs the queries.

4. Finally, an evaluator object uses the results to list metrics defined by a configuration file
against an oracle test set.

This pipeline is condensed into a single class that can be built from a configuration file.

Statement of Need
Dense retrieval has been popular in Information Retrieval since 2015 (Guo et al., 2017; Hui et
al., 2017; Yin et al., 2015). Retrieval effectiveness of these dense retrieval methods was often
compared against weaker baselines and was not shown significantly stronger than statistical
models (Yang et al., 2019), such as a well-tuned BM25 model while being considerably slower.
This situation is similar to what happened in the early 2000s, where there was a slow down
in retrieval effectiveness from the use of less robust baselines (Armstrong et al., 2009) when
proposing new methods.

However, attitudes on dense retrieval changed when transformer models were found to be
effective once fine-tuned on Natural Language Inference tasks or Ms-Marco (T. Nguyen et al.,
2016) as a cross-encoder (Lin, 2019), significantly overtaking even the best BM25 models.

There are generally two classes of dense retrieval models for IR: (1) the cross-encoder, which
encodes queries and documents at query time and (2) the bi-encoder, which can encode
documents at index time and queries at query time. The cross-encoder is generally more
effective than the bi-encoder model for retrieval (Lin et al., 2021). However, this increased
effectiveness requires a more substantial computation and can be a bottleneck in production
systems. Therefore, a less expensive model such as BM25 is typically used to retrieve smaller
candidate lists (first-stage retrieval) to be fed to second-stage retrieval re-ranking by a cross-
encoder.

Although cross-encoders are more accurate than bi-encoders, bi-encoder are more effective
than BM25 (V. Nguyen et al., 2022) and are faster than cross-encoders. Therefore, a gap in
the literature in IR is to replace BM25 first-stage retrieval with a bi-encoder or otherwise used
as the sole ranking system, without a second-stage re-ranker. However, current libraries do not
address this use case because it requires integration with the indexing and querying pipeline of
the search engine.

DeBEIR is a library that addresses this gap by facilitating bi-encoder research and provides
base classes with flexible functionality through inheritance. While we provide cross-encoder
re-rankers for feature completeness, the library’s priority is facilitating bi-encoder research.
The strength of bi-encoders lies in the offline indexing of dense vectors. These vectors can
then be used for first-stage retrieval and potentially passed to a second-stage retrieval system
such as a cross-encoder. Bi-encoders can be used as the sole retrieval system when there is
a lack of training data (V. Nguyen et al., 2022) and, therefore, can be more useful in areas
such as biomedical IR, where training data is expensive to annotate and therefore scarce.
Cross-encoders, however, require large amounts of training data for effectiveness.

The DeBEIR library offers an API for commonly used functions for training, hyper-parameter
tuning (Figure 2) and evaluation of transformer-based models. The pipeline can be broken
up into multiple stages: parsing, query building, query execution, serialization and evaluation
(Figure 1). Furthermore, we package our caching mechanism for the expensive encoding
operations to speed up the pipeline during repeated experimentation.

Although similar libraries exist, such as sentence-transformers (Reimers & Gurevych, 2019), and
openNIR (MacAvaney, 2020), they have less of a focus on the early stages of the dense retrieval
pipeline. This stage involves indexing the textual data from the corpora and indexing dense
vector representations, which is only helpful for bi-encoder type models over the traditional
cross-encoder and is thus not typically explored by other libraries. Other limitations include a

Nguyen et al. (2023). DeBEIR: A Python Package for Dense Bi-Encoder Information Retrieval. Journal of Open Source Software, 8(87), 5017.
https://doi.org/10.21105/joss.05017.

2

https://doi.org/10.21105/joss.05017

lack of extendability which restricts the users’ options for training customization (we provide
base classes that can be inherited) or the library is tailored to general-purpose machine learning
rather than informational retrieval. Finally, these libraries have a limited caching mechanism,
as cross-encoders typically does not require this capability as it is decoupled from the index.
Bi-encoders can have queries cached at query time to make repeated query calls to the index
significantly faster.

DeBEIR will help facilitate early-stage dense retrieval and rapid experimentation research with
bi-encoders. It is also flexible enough for second-stage retrieval using cross-encoders from this
library or other libraries. We will continue to improve this tool over time.

Elasticsearch

Configuration
File

Class
Factory

Query Builder Class

Query Executor Class

Dense Encoder

Raw Query
Topics

async

Parse Results

Evaluator or
Analysis

Class

Output
Results

Pipeline for experiments

async

Figure 1: Standard flow of the DeEBIR query/evaluation loop.

Training pipeline

Configuration File Factory Trainer

Wandb Logging Optuna
hyperparameter

Evaluator Results

Figure 2: Standard flow of the DeEBIR training loop.

Acknowledgments
The DeBEIR library uses Sentence-Transformers, Hugging Face’s transformers and Datasets,
allRank, Optuna, Elasticsearch and Trectools python packages.

This search is supported by CSIRO Data61, an Australian Government agency through the
Precision Medicine FSP program and the Australian Research Training Program. We extend
thanks to Brian Jin (Data61) for providing a code review.

Nguyen et al. (2023). DeBEIR: A Python Package for Dense Bi-Encoder Information Retrieval. Journal of Open Source Software, 8(87), 5017.
https://doi.org/10.21105/joss.05017.

3

https://doi.org/10.21105/joss.05017

Examples

Pipeline

The pipeline is a single class that can be built from a configuration file. The configuration
file is a TOML file that defines the pipeline stages and their parameters. The pipeline is built
using a class factory that takes in the configuration file and creates the pipeline stages. The
pipeline stages are then executed in order.

from debeir.interfaces.pipeline import NIRPipeline

from debeir.interfaces.callbacks import (SerializationCallback,

EvaluationCallback)

from debeir.evaluation import Evaluator

p = NIRPipeline.build_from_config(config_fp="./tests/config.toml",

engine="elasticsearch",

nir_config_fp="./tests/nir_config.toml")

Optional callbacks to serialize to disk

serial_cb = SerializationCallback(p.config, p.nir_settings)

Or evaluation

evaluator = Evaluator.build_from_config(p.config, metrics_config=p.metrics_config)

evaluate_cb = EvaluationCallback(evaluator,

config=p.config)

p.add_callback(serial_cb)

p.add_callback(evaluate_cb)

Asynchronously execute queries

results = await p.run_pipeline()

Post processing of results can go here

Training a model

import wandb

from debeir.training.hparm_tuning.trainer import SentenceTransformerTrainer

from debeir.training.hparm_tuning.config import HparamConfig

from sentence_transformers import evaluation

Load a hyper-parameter configuration file

hparam_config = HparamConfig.from_json(

"./configs/training/submission.json"

)

Integration with wandb

wandb.wandb.init(project="My Project")

Create a trainer object

trainer = SentenceTransformerTrainer(

dataset=get_dataset(), # Specify some dataloading function here

evaluator_fn=evaluation.BinaryClassificationEvaluator,

hparams_config=hparam_config,

use_wandb=True

Nguyen et al. (2023). DeBEIR: A Python Package for Dense Bi-Encoder Information Retrieval. Journal of Open Source Software, 8(87), 5017.
https://doi.org/10.21105/joss.05017.

4

https://doi.org/10.21105/joss.05017

)

Foward parameters to underlying SentenceTransformer model

trainer.fit(

save_best_model=True,

checkpoint_save_steps=179

)

Hyperparameter tuning

from sentence_transformers import evaluation

from debeir.training.hparm_tuning.optuna_rank import (run_optuna_with_wandb,

print_optuna_stats)

from debeir.training.hparm_tuning.trainer import SentenceTransformerHparamTrainer

from debeir.training.hparm_tuning.config import HparamConfig

Load a hyper-parameter configuration file with optuna parameters

hparam_config = HparamConfig.from_json(

"./configs/hparam/trec2021_tuning.json"

)

trainer = SentenceTransformerHparamTrainer(

dataset_loading_fn=data_loading_fn,

evaluator_fn=evaluation.BinaryClassificationEvaluator,

hparams_config=hparam_config,

)

Run optuna with wandb integration

study = run_optuna_with_wandb(trainer, wandb_kwargs={

"project": "my-hparam-tuning-project"

})

Print optuna stats and best run

print_optuna_stats(study)

More information on the library is found on the GitHub page, DeBEIR. Any feedback and
suggestions are welcome by opening a thread in DeBEIR issues.

References
Armstrong, T., Moffat, A., Webber, W., & Zobel, J. (2009). Improvements that don’t add up:

Ad-hoc retrieval results since 1998. CIKM, 601–610.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep
bidirectional transformers for language understanding. Proceedings of the Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, 4171–4186. https://doi.org/10.18653/v1/N19-1423

Guo, J., Fan, Y., Ai, Q., & Croft, B. (2017). A deep relevance matching model for ad-hoc
retrieval. Computing Research Repository, abs/1711.08611, 55–64. http://arxiv.org/abs/
1711.08611

Hui, K., Yates, A., Berberich, K., & Melo, G. de. (2017). A position-aware deep model for rele-
vance matching in information retrieval. Computing Research Repository, abs/1704.03940.
http://arxiv.org/abs/1704.03940

Nguyen et al. (2023). DeBEIR: A Python Package for Dense Bi-Encoder Information Retrieval. Journal of Open Source Software, 8(87), 5017.
https://doi.org/10.21105/joss.05017.

5

https://www.github.com/ayuei/debeir
https://www.github.com/ayuei/debeir/issues
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/1711.08611
http://arxiv.org/abs/1711.08611
http://arxiv.org/abs/1704.03940
https://doi.org/10.21105/joss.05017

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep
convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger
(Eds.), Advances in neural information processing systems 25 (pp. 1097–1105). Curran
Associates, Inc. https://doi.org/10.1145/3065386

Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., & Kang, J. (2019). BioBERT: a pre-
trained biomedical language representation model for biomedical text mining. Bioinformatics,
36(4), 1234–1240. https://doi.org/10.1093/bioinformatics/btz682

Lin, J. (2019). Neural hype, justified! A recantation. ACM SIGIR Forum, 53. http:
//sigir.org/wp-content/uploads/2019/december/p088.pdf

Lin, J., Nogueira, R., & Yates, A. (2021). Pretrained transformers for text ranking: Bert
and beyond. Synthesis Lectures on Human Language Technologies, 14(4), 1–325. https:
//doi.org/10.1162/coli_r_00468

Liu, Yang, & Lapata, M. (2019). Text summarization with pretrained encoders. Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
3730–3740. https://doi.org/10.18653/v1/D19-1387

Liu, Yinhan, Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer,
L., & Stoyanov, V. (2019). RoBERTa: A robustly optimized BERT pretraining approach.
Computing Research Repository, abs/1907.11692. http://arxiv.org/abs/1907.11692

MacAvaney, S. (2020). OpenNIR: A complete neural ad-hoc ranking pipeline. Proceedings
of the 13th International Conference on Web Search and Data Mining, 845–848. https:
//doi.org/10.1145/3336191.3371864

Nguyen, T., Rosenberg, M., Song, X., Gao, J., Tiwary, S., Majumder, R., & Deng, L. (2016).
MS MARCO: A human generated MAchine reading COmprehension dataset. CoRR,
abs/1611.09268. http://arxiv.org/abs/1611.09268

Nguyen, V., Rybinski, M., Karimi, S., & Xing, Z. (2022). Search like an expert: Reducing
expertise disparity using a hybrid neural index for COVID-19 queries. Journal of Biomedical
Informatics, 127, 104005. https://doi.org/10.1016/j.jbi.2022.104005

Reimers, N., & Gurevych, I. (2019). Sentence-BERT: Sentence embeddings using Siamese
BERT-networks. EMNLP, 3982–3992. https://doi.org/10.18653/v1/D19-1410

Robertson, S., Walker, S., Jones, S., Hancock-Beaulieu, M., & Gatford, M. (1995, January).
Okapi at TREC-3. TREC. https://trec.nist.gov/pubs/trec3/t3/_proceedings.html

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,
& Rabinovich, A. (2014). Going deeper with convolutions. IEEE Conference on Computer
Vision and Pattern Recognition, 1–9. https://doi.org/10.1109/CVPR.2015.7298594

Yang, W., Lu, K., Yang, P., & Lin, J. (2019). Critically examining the” neural hype” weak
baselines and the additivity of effectiveness gains from neural ranking models. Proceedings of
the 42nd International ACM SIGIR Conference on Research and Development in Information
Retrieval, 1129–1132. https://doi.org/10.1145/3331184.3331340

Yin, W., Schütze, H., Xiang, B., & Zhou, B. (2015). ABCNN: Attention-based convo-
lutional neural network for modeling sentence pairs. Computing Research Repository,
abs/1512.05193. http://arxiv.org/abs/1512.05193

Nguyen et al. (2023). DeBEIR: A Python Package for Dense Bi-Encoder Information Retrieval. Journal of Open Source Software, 8(87), 5017.
https://doi.org/10.21105/joss.05017.

6

https://doi.org/10.1145/3065386
https://doi.org/10.1093/bioinformatics/btz682
http://sigir.org/wp-content/uploads/2019/december/p088.pdf
http://sigir.org/wp-content/uploads/2019/december/p088.pdf
https://doi.org/10.1162/coli_r_00468
https://doi.org/10.1162/coli_r_00468
https://doi.org/10.18653/v1/D19-1387
http://arxiv.org/abs/1907.11692
https://doi.org/10.1145/3336191.3371864
https://doi.org/10.1145/3336191.3371864
http://arxiv.org/abs/1611.09268
https://doi.org/10.1016/j.jbi.2022.104005
https://doi.org/10.18653/v1/D19-1410
https://trec.nist.gov/pubs/trec3/t3/_proceedings.html
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1145/3331184.3331340
http://arxiv.org/abs/1512.05193
https://doi.org/10.21105/joss.05017

	Summary
	Statement of Need
	Acknowledgments
	Examples
	Pipeline
	Training a model
	Hyperparameter tuning

	References

