The Journal of Open Source Software

DOI: 10.21105/joss.05021

Software
= Review @0
= Repository 7
= Archive 7

Editor: Rachel Kurchin ¢

Reviewers:

= @matt-graham
= @Daniel-Dodd

Submitted: 10 November 2022
Published: 09 March 2023

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0

International License (CC BY 4.0).

flowMC: Normalizing flow enhanced sampling package
for probabilistic inference in JAX

2,3 1

Kaze W. K. Wong @ !, Marylou Gabrié , and Daniel Foreman-Mackey

1 Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, US 2 Ecole
Polytechnique, Palaiseau 91120, France 3 Center for Computational Mathematics, Flatiron Institute,
New York, NY 10010, US

Summary

Across scientific fields, the Bayesian framework is used to account for uncertainties in inference
(Ellison, 2004; Lancaster, 2004; Von Toussaint, 2011). However, for models with more than a
few parameters, exact inference is intractable. A frequently used strategy is to approximately
sample the posterior distribution on a model’s parameters with a Markov chain Monte Carlo
(MCMC) method. Yet conventional MCMC methods relying on local updates can take a
prohibitive time to converge when posterior distributions have complex geometries (see e.g.,
Rubinstein & Kroese (2017)).

flowMC is a Python library implementing accelerated MCMC leveraging deep generative
modelling as proposed by Gabrié et al. (2022), built on top of the machine learning libraries
JAX (Bradbury et al., 2018) and Flax (Heek et al., 2020). At its core, flowMC uses a
combination of Metropolis-Hastings Markov kernels using local and global proposed moves.
While multiple chains are run using local-update Markov kernels to generate approximate
samples over the region of interest in the target parameter space, these samples are used to
train a normalizing flow (NF) model to approximate the samples’' density. The NF is then used
in an independent Metropolis-Hastings kernel to propose global jumps across the parameter
space. The flowMC sampler can handle non-trivial geometry, such as multimodal distributions
and distributions with local correlations.

The key features of flowMC are summarized in the following list:

= Since flowMC is built on top of JAX, it supports gradient-based samplers through
automatic differentiation such as the Metropolis-adjusted Langevin algorithm (MALA)
and Hamiltonian Monte Carlo (HMC).

= flowMC uses state-of-the-art NF models such as rational quadratic splines (RQS) to
power its global proposals. These models are efficient in capturing important features
within a relatively short training time.

= Use of accelerators such as graphics processing units (GPUs) and tensor processing units
(TPUs) are natively supported. The code also supports the use of multiple accelerators
with SIMD parallelism.

= By default, just-in-time (JIT) compilations are used to further accelerate the sampling
process.

= We provide a simple black-box interface for the users who want to use flowMC by its
default parameters, as well as an extensive guide explaining trade-offs while tuning the
sampler parameters.

The tight integration of all the above features makes flowMC a highly performant yet simple-
to-use package for statistical inference.
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Statement of need

Bayesian inference requires computing expectations with respect to a posterior distribution on
parameters @ after collecting observations 2. This posterior is given by

t(D10)py (6)
where ¢(D|0) is the likelihood induced by the model, p,(6) the prior on the parameters and
Z(D) the model evidence. For parameter space with more than a few dimensions, it is necessary
to resort to a robust sampling strategy such as MCMC. Drastic gains in computational efficiency
can be obtained by a careful selection of the MCMC transition kernel, which can be assisted
by machine learning methods and libraries.

Gradient-based sampler In a high dimensional space, sampling methods which leverage gradient
information of the target distribution aid by proposing new samples likely to be accepted. flowMC
supports gradient-based samplers such as MALA and HMC through automatic differentiation
with JAX.

Learned transition kernels with NFs When the posterior distribution has a non-trivial
geometry, such as multiple modes or spatially dependent correlation structures (e.g, (Neal,
2003)), samplers based on local updates are inefficient. To address this problem, flowMC also
uses a generative model, namely a NF (Kobyzev et al., 2021; Papamakarios et al., 2021), that
is trained to mimic the posterior distribution and used as a proposal in Metropolis-Hastings
MCMC steps. Variants of this idea have been explored in the past few years (Albergo et al.,
2019; Hoffman et al., 2019; e.g., Parno & Marzouk, 2018). Despite the growing interest in
these methods, few accessible implementations for practitioners exist, especially with GPU and
TPU support. Notably, a version of the NeuTra sampler (Hoffman et al., 2019) is available in
Pyro (Bingham et al., 2019), and the PocoMC package (Karamanis et al., 2022) implements
a version of sequential Monte Carlo (SMC), including NFs.

flowMC implements the method proposed by Gabrié et al. (2022). As individual chains explore
their local neighborhood through gradient-based MCMC steps, multiple chains train the NF to
learn the global landscape of the posterior distribution. In turn, the chains can be propagated
with a Metropolis-Hastings kernel using the NF to propose globally in the parameter space.
The cycle of local sampling, NF tuning, and global sampling is repeated until chains of the
desired length are obtained. The entire algorithm belongs to the class of adaptive MCMC
methods (Andrieu & Thoms, 2008), collecting information from the chains’ previous steps
to simultaneously improve the transition kernel. Usual MCMC diagnostics can be applied
to assess the robustness of the inference results, thereby avoiding the common concern of
validating the NF model. If further sampling from the posterior is necessary, the flow trained
during a previous run can be reused without further training. The mathematical details of the
method are explained in (Gabrié et al., 2021, 2022).

Use of accelerators flowMC is built on top of JAX, which supports the use of GPU and
TPU accelerators by default. Users can write code the same way as they would on a CPU,
and the library will automatically detect the available accelerators and use them at run time.
Furthermore, the library leverages JIT compilations to further improve the performance of the
sampler.

Simplicity and extensibility We provide a black-box interface with a few tuning parameters
for users who intend to use flowMC without too much customization on the sampler side. The
only inputs we require from the users are (1) a function to evaluate the logarithm of the
(unnormalized) density of the posterior distribution of interest and (2) the initial position of
the chains. On top of the black-box interface, the package offers automatic tuning for the
local samplers to reduce the number of hyperparameters users need to manage.
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While we provide a high-level interface suitable for most practitioners, the code is also designed
to be extensible. Researchers with knowledge of more appropriate local and/or global sampling
kernels for their application can integrate the kernels in the sampler module.
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