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Summary
Advances in neural interface technology are facilitating parallel, high-dimensional time series
measurements of the brain in action. A powerful strategy for analyzing these measurements
is to apply unsupervised learning techniques to uncover lower-dimensional latent dynamics
that explain much of the variance in the high-dimensional measurements (Cunningham & Yu,
2014; Golub et al., 2018; Vyas et al., 2020). Latent factor analysis via dynamical systems
(LFADS) (Pandarinath et al., 2018) provides a deep learning approach for extracting estimates
of these latent dynamics from neural population data. The recently developed AutoLFADS
framework (Keshtkaran et al., 2022) extends LFADS by using Population Based Training (PBT)
(Jaderberg et al., 2017) to effectively and scalably tune model hyperparameters, a critical step
for accurate modeling of neural population data. As hyperparameter sweeps are one of the
most computationally demanding processes in model development, these workflows should be
deployed in a computationally efficient and cost effective manner given the compute resources
available (e.g., local, institutionally-supported, or commercial computing clusters). The initial
implementation of AutoLFADS used the Ray library (Moritz et al., 2018) to enable support for
specific local and commercial cloud workflows. We extend this support, by providing additional
options for training AutoLFADS models using local clusters in a container-native approach
(e.g., Docker, Podman), unmanaged compute clusters leveraging Ray, and managed compute
clusters leveraging KubeFlow and Kubernetes orchestration.

As the neurosciences increasingly employ deep learning based models that require compute
intensive hyperparameter optimization (Keshtkaran & Pandarinath, 2019; Willett et al., 2021;
Yu et al., 2021), standardization and dissemination of computational methods becomes increas-
ingly challenging. Although this work specifically provides implementations of AutoLFADS, the
tooling provided demonstrates strategies for employing computation at scale while facilitating
dissemination and reproducibility.

Statement of need
Machine learning models enable neuroscience researchers to uncover new insights regarding the
neural basis of perception, cognition, and behavior (Vu et al., 2018). However, models are often
developed with hyperparameters tuned for a specific dataset, despite their intended generality.
Application to new datasets requires computationally intensive hyperparameter searches for
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model tuning. Given the diversity of data across tasks, species, neural interface technologies,
and brain regions, hyperparameter tuning is common and presents a significant barrier to
evaluation and adoption of new algorithms. With the maturation of “AutoML” hyperparameter
exploration libraries (HyperOpt, SkOpt, Ray), it is now easier to effectively search an extensive
hyperparameter space. Solutions like KubeFlow (Kubeflow, 2018) additionally enable scaling
on managed clusters and provide near codeless workflows for the entire machine learning
lifecycle. This lifecycle typically begins with data ingest and initial evaluation of machine
learning algorithms with respect to data, and then matures to compute intensive model training
and tuning. Building upon these tools, we empower researchers with multiple deployment
strategies for leveraging AutoLFADS on local compute, on ad-hoc or unmanaged compute,
and on managed or cloud compute, as illustrated in Figure 1.

Table 1: Workflow overview. Summary of user burdens related to the three available deployment
strategies.

Task Local Solution Unmanaged Solution
Managed Solution
(this work)

Cluster management • Routine
maintenance of
software and
hardware

Same as Local
Solution

N/A

Cluster orchestration N/A • Interacting with
Ray clusters via CLI,
manually setting up
and tearing down
clusters as needed
• Maintenance of
YAML configuration
files that specify
network locations
and access
credentials for
machines in the
cluster

• Interacting with
Kubernetes clusters
via user interfaces
(GUI or CLI)

Dependency
management

• Running container
images via Docker,
Podman, or
containerd

• Installing
dependencies in a
virtual environment
via Conda or pip

• Specifying
location of desired
container image

Running distributed
jobs

• Developing YAML
model configurations
and running Python
scripts that use Ray
to sweep
hyperparameters

Same as Local
Solution

• Providing model
and hyperparameter
sweep configurations
to KubeFlow via
YAML or code-less
UI

Evaluating and
tuning models

• Visualizing loss
curves and
intermediate output
in TensorBoard
• Flexible post-hoc
analysis

Same as Local
Solution

• Visualizing loss
curves and
intermediate output
in KubeFlow
• Flexible post-hoc
analysis
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Solutions

Figure 1: Solutions for running AutoLFADS on various compute infrastructures. (Left) This column
depicts a local workflow: users leverage a container image that bundles all the AutoLFADS software
dependencies and provides an entrypoint directly to the LFADS package. Container images are run with
a supported container runtime (e.g., Docker, Podman, containerd). Users can interact with this workflow
by providing YAML model configuration files and command line (CLI) arguments. (Middle) This column
depicts a scalable solution using Ray: users start a Ray cluster by specifying the configuration (network
location and authentication) as a YAML file. They install AutoLFADS locally or in a virtual environment,
update YAML model configurations and hyperparameter sweep scripts, and then run the experiment
code. (Right) This column depicts a scalable solution using KubeFlow: users provide an experiment
specification that includes model configuration and hyperparameter sweep specifications either as a YAML
file or using a code-less UI-based workflow. After experiment submission, the KubeFlow service spawns
workers across the cluster that use the same container images as the local workflow.

When training models on a novel dataset, it is often helpful to probe hyperparameters and
investigate model performance locally prior to conducting a more exhaustive, automated
hyperparameter search. This need can be met by installing the LFADS package locally or in a
virtual environment. Isolating the workflow from local computational environments, we provide
a pair of reference container images targeting CPU and GPU architectures. This allows users
to treat the bundled algorithm as a portable executable for which they simply provide the input
neural data and desired LFADS model configuration to initiate model training. This approach
eliminates the need for users to configure their environments with compatible interpreters and
dependencies. Instead, the user installs a container runtime engine (e.g., Docker, Podman),
which are generally well-supported cross-platform tools, to run the image based solution. In
addition to streamlining configuration, this approach enables reproducibility as the software
environment employed for computation is fully defined and version controlled.

Scaling initial investigations may involve evaluating data on internal lab resources, which may
comprise a set of loosely connected compute devices. In such a heterogeneous environment, we
leverage Ray to efficiently create processing jobs. In this approach Ray spawns a set of workers
on compute nodes that the primary spawner is then able to send jobs to. This approach
requires users to provide a mapping of machine locations (e.g., IP, hostname) and access
credentials. It provides useful flexibility beyond single node local compute, but requires users to
manage compute cluster configuration details. Ray can also be deployed in managed compute
environments, but similarly requires users to have knowledge of the underlying compute
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infrastructure configuration defined by the managed environment. In short, the Ray based
solution requires researchers to specifically target, and potentially modify, compute cluster
configuration.

To more effectively leverage large scale compute in managed infrastructure, such as those
provided by commercial and academic cloud providers, we use KubeFlow which is a compre-
hensive machine learning solution designed to be operated as a service on top of Kubernetes
based orchestration. This approach enables code-less workflows and provides a rich set of
tooling around development (e.g., notebooks, algorithm exploration) and automation (e.g.,
Pipelines) that reduces research iteration time. In contrast to Ray, configuration requirements
are algorithm focused and are generally agnostic to the lower level details related to compute
cluster configuration. With this solution, Kubernetes manages the underlying compute re-
source pool and is able to efficiently schedule compute jobs. Within KubeFlow, we leverage
Katib (George et al., 2020) – KubeFlow’s “AutoML” framework – to efficiently explore the
hyperparameter space and specify individual sweeps. As KubeFlow is an industry-grade tool,
many cloud providers offer KubeFlow as a service or provide supported pathways for deploying
a KubeFlow cluster, facilitating replication and compute resource scaling.

The two distributed workflows provided, Ray and KubeFlow based, each have their respective
advantages and disadvantages. The correct choice for a specific research end user is dependent
upon their requirements and access to compute resources. Thus we provide an evaluation in
Table 1 as a starting point in this decision making process.

Evaluation
A core innovation of AutoLFADS is the integration of PBT for hyperparameter exploration. As
the underlying job scheduler and PBT implementation are unique in KubeFlow, we used the
MC Maze dataset (Churchland & Kaufman, 2021) from the Neural Latents Benchmark (Pei
et al., 2021) to train and evaluate two AutoLFADS models. One model was trained with the
Ray solution and the other with the KubeFlow solution using matching PBT hyperparameters
and model configurations to ensure that models of comparable quality can be learned across
both solutions. A comprehensive description of the AutoLFADS algorithm and results applying
the algorithm to neural data using Ray can be found in Keshtkaran et al. (2022). We
demonstrate similar converged model performances on metrics relevant to the quality of
inferred firing rates in Table 2 (Pei et al., 2021). In Figure 3, inferred firing rates from the
KubeFlow trained AutoLFADS model are shown along with conventional firing rate estimation
strategies. Qualitatively, these example inferences are similar to those described in Keshtkaran
et al. (2022), showing similar consistency across trials and resemblance to peristimulus time
histograms (PSTH). In Figure 2, we plot the hyperparameter and associated loss values for
the KubeFlow based implementation of AutoLFADS to provide a visualization of the PBT
based optimization process on these data. These results demonstrate that although PBT
is stochastic, both the original Ray and novel KubeFlow implementations are converging to
stable, comparable solutions.
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Table 2: AutoLFADS Performance. An evaluation of AutoLFADS performance on Ray and KubeFlow.
Test trial performance comparison on four neurally relevant metrics for evaluating latent variable models:
co-smoothing on held-out neurons (co-bps), hand trajectory decoding on held-out neurons (vel R2), match
to peristimulus time histogram (PSTH) on held-out neurons (psth R2), forward prediction on held-in
neurons (fp-bps). The trained models converge with less than 5% difference between the frameworks on
the above metrics. The percent difference is calculated with respect to the Ray framework.

Framework co-bps (↑) vel R2 (↑) psth R2 (↑) fp-bps (↑)
Ray 0.3364 0.9097 0.6360 0.2349
KubeFlow 0.35103 0.9099 0.6339 0.2405
Percent difference (%) +4.35 +0.03 -0.33 +2.38

Figure 2: Evolution of loss curves and hyperparameters for AutoLFADS using KubeFlow. Each point
represents each individual training trial. Points are colored by the exponentially-smoothed negative
log-likelihood (NLL) loss at the end of each generation.
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Figure 3: AutoLFADS inferred firing rates, relative to conventional estimation strategies, aligned to
movement onset time (dashed vertical line at 250ms) for 3 example neurons (columns) and 6 example
conditions (colors; out of 108 conditions). Smoothed spike rates calculated with a Gaussian kernel, 50
ms st.dev. (top), trial-averaged peristimulus time histogram (PSTH) (middle), and inferred firing rates
of AutoLFADS on KubeFlow (bottom). The smoothed spikes and inferred firing rates are shown for
corresponding trials in the validation set (trial count range from 2 to 6 per condition, shown as individual
traces for each trial), while the PSTHs are calculated for all trials (trial counts range from 19 to 24 per
condition, one trace per condition). In addition, the PSTHs are calculated based on the averaged spikes
smoothed with a 70 ms st.dev Gaussian kernel, which corresponds to the definition of PSTHs used for
the evaluation metric PSTH R2 (Table 1). In all subfigures, the inferred rates are calculated with a time
resolution of 5ms.
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