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Summary
In recent years datasets have grown in size and diversity, combining different data types.
Multimodal machine learning projects involving tabular data, images and/or text are gaining
popularity (e.g. Garg et al. (2022)). Traditional approaches involved independent feature
generation from every data type and their combination in the later stage before passing them
to an algorithm for classification or regression.

However, with the advent of “easy-to-use” Deep Learning (DL) frameworks such as Tensorflow
(Abadi et al., 2015) or PyTorch (Paszke et al., 2019), and the subsequent advances in the
fields of Computer Vision, Natural Language Processing or Deep Learning for Tabular data, it
is now possible to use state-of-the-art DL models and combine all datasets early in the process.
This has two main advantages: (i) we can partially or entirely skip the feature engineering
step, and (ii) the representations of each data type are learned jointly. This means that such
representations contain information: (i) related to the target if the problem is supervised; and
(ii) how the different data types relate to each other.

Furthermore, the flexibility inherent to DL approaches allows the usage of techniques primarily
designed only for text and/or images to tabular data, e.g., transfer learning or self-supervised
pre-training.

With that in mind, we introduce pytorch-widedeep, a flexible package for multimodal deep
learning designed to facilitate the combination of tabular data with text and images.

Statement of need
There is a small number of packages available to use DL for tabular data alone (e.g., pytorch-
tabular (Joseph, 2021), pytorch-tabnet or autogluon-tabular (Erickson et al., 2020)) or that
focus mainly on combining text and images (e.g., MMF (Singh et al., 2020)). With that in
mind, our goal is to provide a modular, flexible, and “easy-to-use” framework that allows the
combination of a wide variety of models for all data types.

pytorch-widedeep is based on Google’s Wide and Deep Algorithm (Cheng et al., 2016), hence
its name. The original algorithm is heavily adjusted for multimodal datasets and intended to
facilitate the combination of text and images with corresponding tabular data. As opposed
to Google’s “Wide and Deep” and “Deep and Cross” (R. Wang et al., 2017) architecture
implementations in Keras/Tensorflow, we use the wide/cross and deep model design as an
initial building block of PyTorch deep learning models to provide the basis for a plethora of
state-of-the-art models and architecture implementations that can be seamlessly assembled
with just a few lines of code. Additionally, the individual components do not necessarily have
to be a part of the final architecture. The main components of those architectures are shown
in Figure 1.
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Figure 1: Main components of the pytorch-widedeep architecture. The blue and green boxes in the figure
represent the main data types and their corresponding model components, namely wide, deeptabular,
deeptext and deepimage. The yellow boxes represent so-called fully-connected (FC) heads, simply MLPs
that one can optionally add on top of the main components. These are referred to in the figure as
TextHead and ImageHead. The dashed-line rectangles indicate that the outputs from the components
inside are concatenated if a final FC head (referred to as DeepHead in the figure) is used. The faded-green
deeptabular box aims to indicate that the output of the deeptabular component will be concatenated
directly with the output of the deeptext or deepimage components or with the FC heads if these are
used. Finally, the arrows indicate the connections, which of course, depend on the final architecture that
the user chooses to build.

Following the notation of (Cheng et al., 2016), the expression for the architecture without a
deephead component can be formulated as:

𝑝𝑟𝑒𝑑 = 𝜎(𝑊𝑇
𝑤𝑖𝑑𝑒[𝑥, 𝜙(𝑥)] +∑

𝑖∈ℐ
𝑊𝑇

𝑖 𝑎
𝑙𝑓
𝑖 + 𝑏)

Where ℐ = {𝑑𝑒𝑒𝑝𝑡𝑎𝑏𝑢𝑙𝑎𝑟, 𝑑𝑒𝑒𝑝𝑡𝑒𝑥𝑡, 𝑑𝑒𝑒𝑝𝑖𝑚𝑎𝑔𝑒}, 𝜎 is the sigmoid function, 𝑊 are the
weight matrices applied to the wide model and to the final activations of the deep models, 𝑎
are these final activations, 𝜙(𝑥) are the cross-product transformations of the original features
𝑥, and 𝑏 is the bias term.

If there is a deephead component, the previous expression turns into:

𝑝𝑟𝑒𝑑 = 𝜎(𝑊𝑇
𝑤𝑖𝑑𝑒[𝑥, 𝜙(𝑥)] +𝑊𝑇

𝑑𝑒𝑒𝑝ℎ𝑒𝑎𝑑𝑎
𝑙𝑓
𝑑𝑒𝑒𝑝ℎ𝑒𝑎𝑑 + 𝑏)

At this stage, it is worth mentioning that the library has been built with a special emphasis on
flexibility. That is, we want users to easily run as many different models as possible and/or
use their custom components if they prefer. With that in mind, each and every data type
component in the figure above can be used independently and in isolation. For example, if the
user wants to use a ResNet model to perform classification in an image-only dataset, that is
perfectly possible using this library. In addition, following some minor adjustments described
in the documentation, the user can use any custom model for each data type – mainly, a
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custom model is a standard PyTorch model class that must have a property or attribute called
output_dim. This way, the WideDeep collector class knows the size of the incoming activations
and is able to construct the multimodal model. Examples of how to use custom components
can be found in the repository and documentation.

The Model Hub
This section will briefly introduce the current model components available for each data type
in the library. Remember that the library is constantly under development, and models are
constantly added to the “model-hub”.

The wide component
This is a linear model for tabular data where the non-linearities are captured via cross-product
transformations. This is the simplest of all components, and we consider it very useful as a
benchmark when used on its own.

The deeptabular component
Currently, pytorch-widedeep offers the following models for the so-called deeptabular compo-
nent:(i) TabMlp, (ii) TabResnet, (iii) TabNet (Arik & Pfister, 2021), (iv) ContextAttentionMLP
(Z. Yang et al., 2016), (v) SelfAttentionMLP (X. Huang et al., 2020), (vi) TabTransformer (X.
Huang et al., 2020), (vii) SAINT (Somepalli et al., 2021), (viii) FT-Transformer (Gorishniy
et al., 2021), (ix) TabFastFormer: our adaptation of the FastFormer (Wu et al., 2021), (x)
TabPerceiver: our adaptation of the Perceiver (Jaegle et al., 2021), (xi) BayesianWide and
(xii) BayesianTabMlp (both based on Blundell et al. (2015)).

The deepimage component
The image-related component is fully integrated with the newest version of torchvision (TorchVi-
sion maintainers & contributors, 2016) (0.13 at the time of writing). This version has Multi-
Weight Support. Therefore, a variety of model variants are available to use with pre-trained
weights obtained with different datasets. Currently, the model variants supported by pytorch-

widedeep are (i) Resnet (He et al., 2016), (ii) Shufflenet (Zhang et al., 2018), (iii) Resnext
(Xie et al., 2017), (iv) Wide Resnet (Zagoruyko & Komodakis, 2016), (v) Regnet (Xu et al.,
2022), (vi) Densenet (G. Huang et al., 2017), (vii) Mobilenet (A. G. Howard et al., 2017), (viii)
MNasnet (Tan et al., 2019), (ix) Efficientnet (Tan & Le, 2019) and (x) Squeezenet (Iandola
et al., 2016).

The deeptext component
Currently, pytorch-widedeep offers the following models for the deeptext component: (i)
BasicRNN, (ii) AttentiveRNN and (iii) StackedAttentiveRNN. The library will be integrated
with the Huggingface transformers library (Wolf et al., 2019) in the near future. However, it is
worth mentioning that although transformer-based models are not natively supported by our
library, these can be used easily with pytorch-widedeep as a custom model (please, see the
documentation for details).

Forms of model training:
Training single or multi-mode models in pytorch-widedeep is handled by the different training
classes. Currently, pytorch-widedeep offers the following training options: (i) “Standard”
Supervised training, (ii) Supervised Bayesian training, and (iii) Self-supervised pre-training.
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Contribution
pytorch-widedeep is being developed and used by many active community members. Anyone
can join the discussion on Slack.
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