
pytorch-widedeep: A flexible package for multimodal
deep learning
Javier Rodriguez Zaurin 1 and Pavol Mulinka 2

1 Independent Researcher, Spain 2 Centre Tecnologic de Telecomunicacions de Catalunya
(CTTC/CERCA), Catalunya, Spain

DOI: 10.21105/joss.05027

Software
• Review
• Repository
• Archive

Editor: Øystein Sørensen
Reviewers:

• @siboehm
• @makoeppel

Submitted: 13 November 2022
Published: 24 June 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
In recent years datasets have grown in size and diversity, combining different data types.
Multimodal machine learning projects involving tabular data, images and/or text are gaining
popularity (e.g. Garg et al. (2022)). Traditional approaches involved independent feature
generation from every data type and their combination in the later stage before passing them
to an algorithm for classification or regression.

However, with the advent of “easy-to-use” Deep Learning (DL) frameworks such as Tensorflow
(Abadi et al., 2015) or PyTorch (Paszke et al., 2019), and the subsequent advances in the
fields of Computer Vision, Natural Language Processing or Deep Learning for Tabular data, it
is now possible to use state-of-the-art DL models and combine all datasets early in the process.
This has two main advantages: (i) we can partially or entirely skip the feature engineering
step, and (ii) the representations of each data type are learned jointly. This means that such
representations contain information: (i) related to the target if the problem is supervised; and
(ii) how the different data types relate to each other.

Furthermore, the flexibility inherent to DL approaches allows the usage of techniques primarily
designed only for text and/or images to tabular data, e.g., transfer learning or self-supervised
pre-training.

With that in mind, we introduce pytorch-widedeep, a flexible package for multimodal deep
learning designed to facilitate the combination of tabular data with text and images.

Statement of need
There is a small number of packages available to use DL for tabular data alone (e.g., pytorch-
tabular (Joseph, 2021), pytorch-tabnet or autogluon-tabular (Erickson et al., 2020)) or that
focus mainly on combining text and images (e.g., MMF (Singh et al., 2020)). With that in
mind, our goal is to provide a modular, flexible, and “easy-to-use” framework that allows the
combination of a wide variety of models for all data types.

pytorch-widedeep is based on Google’s Wide and Deep Algorithm (Cheng et al., 2016), hence
its name. The original algorithm is heavily adjusted for multimodal datasets and intended to
facilitate the combination of text and images with corresponding tabular data. As opposed
to Google’s “Wide and Deep” and “Deep and Cross” (R. Wang et al., 2017) architecture
implementations in Keras/Tensorflow, we use the wide/cross and deep model design as an
initial building block of PyTorch deep learning models to provide the basis for a plethora of
state-of-the-art models and architecture implementations that can be seamlessly assembled
with just a few lines of code. Additionally, the individual components do not necessarily have
to be a part of the final architecture. The main components of those architectures are shown
in Figure 1.

Zaurin, & Mulinka. (2023). pytorch-widedeep: A flexible package for multimodal deep learning. Journal of Open Source Software, 8(86), 5027.
https://doi.org/10.21105/joss.05027.

1

https://orcid.org/0000-0002-1082-1107
https://orcid.org/0000-0002-9394-8794
https://doi.org/10.21105/joss.05027
https://github.com/openjournals/joss-reviews/issues/5027
https://github.com/jrzaurin/pytorch-widedeep
https://doi.org/10.5281/zenodo.7908172
https://osorensen.rbind.io/
https://orcid.org/0000-0003-0724-3542
https://github.com/siboehm
https://github.com/makoeppel
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05027


Figure 1: Main components of the pytorch-widedeep architecture. The blue and green boxes in the figure
represent the main data types and their corresponding model components, namely wide, deeptabular,
deeptext and deepimage. The yellow boxes represent so-called fully-connected (FC) heads, simply MLPs
that one can optionally add on top of the main components. These are referred to in the figure as
TextHead and ImageHead. The dashed-line rectangles indicate that the outputs from the components
inside are concatenated if a final FC head (referred to as DeepHead in the figure) is used. The faded-green
deeptabular box aims to indicate that the output of the deeptabular component will be concatenated
directly with the output of the deeptext or deepimage components or with the FC heads if these are
used. Finally, the arrows indicate the connections, which of course, depend on the final architecture that
the user chooses to build.

Following the notation of (Cheng et al., 2016), the expression for the architecture without a
deephead component can be formulated as:

𝑝𝑟𝑒𝑑 = 𝜎(𝑊𝑇
𝑤𝑖𝑑𝑒[𝑥, 𝜙(𝑥)] +∑

𝑖∈ℐ
𝑊𝑇

𝑖 𝑎
𝑙𝑓
𝑖 + 𝑏)

Where ℐ = {𝑑𝑒𝑒𝑝𝑡𝑎𝑏𝑢𝑙𝑎𝑟, 𝑑𝑒𝑒𝑝𝑡𝑒𝑥𝑡, 𝑑𝑒𝑒𝑝𝑖𝑚𝑎𝑔𝑒}, 𝜎 is the sigmoid function, 𝑊 are the
weight matrices applied to the wide model and to the final activations of the deep models, 𝑎
are these final activations, 𝜙(𝑥) are the cross-product transformations of the original features
𝑥, and 𝑏 is the bias term.

If there is a deephead component, the previous expression turns into:

𝑝𝑟𝑒𝑑 = 𝜎(𝑊𝑇
𝑤𝑖𝑑𝑒[𝑥, 𝜙(𝑥)] +𝑊𝑇

𝑑𝑒𝑒𝑝ℎ𝑒𝑎𝑑𝑎
𝑙𝑓
𝑑𝑒𝑒𝑝ℎ𝑒𝑎𝑑 + 𝑏)

At this stage, it is worth mentioning that the library has been built with a special emphasis on
flexibility. That is, we want users to easily run as many different models as possible and/or
use their custom components if they prefer. With that in mind, each and every data type
component in the figure above can be used independently and in isolation. For example, if the
user wants to use a ResNet model to perform classification in an image-only dataset, that is
perfectly possible using this library. In addition, following some minor adjustments described
in the documentation, the user can use any custom model for each data type – mainly, a

Zaurin, & Mulinka. (2023). pytorch-widedeep: A flexible package for multimodal deep learning. Journal of Open Source Software, 8(86), 5027.
https://doi.org/10.21105/joss.05027.

2

https://doi.org/10.21105/joss.05027


custom model is a standard PyTorch model class that must have a property or attribute called
output_dim. This way, the WideDeep collector class knows the size of the incoming activations
and is able to construct the multimodal model. Examples of how to use custom components
can be found in the repository and documentation.

The Model Hub
This section will briefly introduce the current model components available for each data type
in the library. Remember that the library is constantly under development, and models are
constantly added to the “model-hub”.

The wide component
This is a linear model for tabular data where the non-linearities are captured via cross-product
transformations. This is the simplest of all components, and we consider it very useful as a
benchmark when used on its own.

The deeptabular component
Currently, pytorch-widedeep offers the following models for the so-called deeptabular compo-
nent:(i) TabMlp, (ii) TabResnet, (iii) TabNet (Arik & Pfister, 2021), (iv) ContextAttentionMLP
(Z. Yang et al., 2016), (v) SelfAttentionMLP (X. Huang et al., 2020), (vi) TabTransformer (X.
Huang et al., 2020), (vii) SAINT (Somepalli et al., 2021), (viii) FT-Transformer (Gorishniy
et al., 2021), (ix) TabFastFormer: our adaptation of the FastFormer (Wu et al., 2021), (x)
TabPerceiver: our adaptation of the Perceiver (Jaegle et al., 2021), (xi) BayesianWide and
(xii) BayesianTabMlp (both based on Blundell et al. (2015)).

The deepimage component
The image-related component is fully integrated with the newest version of torchvision (TorchVi-
sion maintainers & contributors, 2016) (0.13 at the time of writing). This version has Multi-
Weight Support. Therefore, a variety of model variants are available to use with pre-trained
weights obtained with different datasets. Currently, the model variants supported by pytorch-

widedeep are (i) Resnet (He et al., 2016), (ii) Shufflenet (Zhang et al., 2018), (iii) Resnext
(Xie et al., 2017), (iv) Wide Resnet (Zagoruyko & Komodakis, 2016), (v) Regnet (Xu et al.,
2022), (vi) Densenet (G. Huang et al., 2017), (vii) Mobilenet (A. G. Howard et al., 2017), (viii)
MNasnet (Tan et al., 2019), (ix) Efficientnet (Tan & Le, 2019) and (x) Squeezenet (Iandola
et al., 2016).

The deeptext component
Currently, pytorch-widedeep offers the following models for the deeptext component: (i)
BasicRNN, (ii) AttentiveRNN and (iii) StackedAttentiveRNN. The library will be integrated
with the Huggingface transformers library (Wolf et al., 2019) in the near future. However, it is
worth mentioning that although transformer-based models are not natively supported by our
library, these can be used easily with pytorch-widedeep as a custom model (please, see the
documentation for details).

Forms of model training:
Training single or multi-mode models in pytorch-widedeep is handled by the different training
classes. Currently, pytorch-widedeep offers the following training options: (i) “Standard”
Supervised training, (ii) Supervised Bayesian training, and (iii) Self-supervised pre-training.

Zaurin, & Mulinka. (2023). pytorch-widedeep: A flexible package for multimodal deep learning. Journal of Open Source Software, 8(86), 5027.
https://doi.org/10.21105/joss.05027.

3

https://doi.org/10.21105/joss.05027


Contribution
pytorch-widedeep is being developed and used by many active community members. Anyone
can join the discussion on Slack.

Acknowledgements
We acknowledge the work of other researchers, engineers, and programmers from the following
projects and libraries:

• the Callbacks and Initializers structure and code is inspired by the torchsample
library (TorchSample maintainers & contributors, 2017), which in itself partially inspired
by Keras (Chollet & others, 2015)

• the TextProcessor class in this library uses the fastai (J. Howard & Gugger, 2020)
Tokenizer and Vocab; the code at utils.fastai_transforms is a minor adaptation of
their code, so it functions within this library; to our experience, their Tokenizer is the
best in class

• the ImageProcessor class in this library uses code from the fantastic Deep Learning for
Computer Vision (DL4CV) (Adrian, 2017) book by Adrian Rosebrock

• we adjusted and integrated ideas of Label and Feature Distribution Smoothing (Y. Yang
et al., 2021)

• we adjusted and integrated ZILNloss code written in Tensorflow/Keras (X. Wang et al.,
2019)

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis,

A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia,
Y., Jozefowicz, R., Kaiser, L., Kudlur, M., … Zheng, X. (2015). TensorFlow: Large-scale
machine learning on heterogeneous systems. https://www.tensorflow.org/

Adrian, R. (2017). Deep learning for computer vision with python. PyImageSearch.com.

Arik, S. Ö., & Pfister, T. (2021). Tabnet: Attentive interpretable tabular learning. Proceedings
of the AAAI Conference on Artificial Intelligence, 35, 6679–6687.

Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. (2015). Weight uncertainty in
neural network. International Conference on Machine Learning, 1613–1622.

Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., Anderson, G.,
Corrado, G., Chai, W., Ispir, M., & others. (2016). Wide & deep learning for recommender
systems. Proceedings of the 1st Workshop on Deep Learning for Recommender Systems,
7–10. https://doi.org/10.48550/arXiv.1606.07792

Chollet, F., & others. (2015). Keras. https://keras.io.

Erickson, N., Mueller, J., Shirkov, A., Zhang, H., Larroy, P., Li, M., & Smola, A. (2020).
AutoGluon-tabular: Robust and accurate AutoML for structured data. arXiv. https:
//doi.org/10.48550/ARXIV.2003.06505

Garg, M., Wazarkar, S., Singh, M., & Bojar, O. (2022). Multimodality for NLP-centered
applications: Resources, advances and frontiers. Proceedings of the Thirteenth Language
Resources and Evaluation Conference, 6837–6847.

Gorishniy, Y., Rubachev, I., Khrulkov, V., & Babenko, A. (2021). Revisiting deep learn-
ing models for tabular data. Advances in Neural Information Processing Systems, 34,
18932–18943.

Zaurin, & Mulinka. (2023). pytorch-widedeep: A flexible package for multimodal deep learning. Journal of Open Source Software, 8(86), 5027.
https://doi.org/10.21105/joss.05027.

4

https://www.tensorflow.org/
https://doi.org/10.48550/arXiv.1606.07792
https://keras.io
https://doi.org/10.48550/ARXIV.2003.06505
https://doi.org/10.48550/ARXIV.2003.06505
https://doi.org/10.21105/joss.05027


He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition.
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770–778.
https://doi.org/10.1109/cvpr.2016.90

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M.,
& Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv Preprint arXiv:1704.04861.

Howard, J., & Gugger, S. (2020). Fastai: A layered API for deep learning. Information, 11(2).
https://doi.org/10.3390/info11020108

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected
convolutional networks. Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 4700–4708.

Huang, X., Khetan, A., Cvitkovic, M., & Karnin, Z. (2020). Tabtransformer: Tabular data
modeling using contextual embeddings. arXiv Preprint arXiv:2012.06678.

Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., & Keutzer, K. (2016).
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size.
arXiv Preprint arXiv:1602.07360.

Jaegle, A., Gimeno, F., Brock, A., Vinyals, O., Zisserman, A., & Carreira, J. (2021). Perceiver:
General perception with iterative attention. International Conference on Machine Learning,
4651–4664.

Joseph, M. (2021). PyTorch tabular: A framework for deep learning with tabular data.
https://arxiv.org/abs/2104.13638

maintainers, TorchVision, & contributors. (2016). TorchVision: PyTorch’s computer vision
library. In GitHub repository. https://github.com/pytorch/vision; GitHub.

maintainers, TorchSample, & contributors. (2017). TorchSample: Lightweight pytorch
functions for neural network featuremap sampling. In GitHub repository. https://github.
com/ncullen93/torchsample; GitHub.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., … Chintala, S. (2019). PyTorch: An
imperative style, high-performance deep learning library. In Advances in neural information
processing systems 32 (pp. 8024–8035). Curran Associates, Inc. http://papers.neurips.cc/
paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Singh, A., Goswami, V., Natarajan, V., Jiang, Y., Chen, X., Shah, M., Rohrbach, M., Batra,
D., & Parikh, D. (2020). MMF: A multimodal framework for vision and language research.
https://github.com/facebookresearch/mmf.

Somepalli, G., Goldblum, M., Schwarzschild, A., Bruss, C. B., & Goldstein, T. (2021). Saint:
Improved neural networks for tabular data via row attention and contrastive pre-training.
arXiv Preprint arXiv:2106.01342.

Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., & Le, Q. V. (2019).
Mnasnet: Platform-aware neural architecture search for mobile. Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2820–2828. https:
//doi.org/10.1109/CVPR.2019.00293

Tan, M., & Le, Q. (2019). Efficientnet: Rethinking model scaling for convolutional neural
networks. International Conference on Machine Learning, 6105–6114.

Wang, R., Fu, B., Fu, G., & Wang, M. (2017). Deep & cross network for ad click predictions.
In Proceedings of the ADKDD’17 (pp. 1–7). https://doi.org/10.48550/arXiv.1708.05123

Zaurin, & Mulinka. (2023). pytorch-widedeep: A flexible package for multimodal deep learning. Journal of Open Source Software, 8(86), 5027.
https://doi.org/10.21105/joss.05027.

5

https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.3390/info11020108
https://arxiv.org/abs/2104.13638
https://github.com/pytorch/vision
https://github.com/ncullen93/torchsample
https://github.com/ncullen93/torchsample
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://github.com/facebookresearch/mmf
https://doi.org/10.1109/CVPR.2019.00293
https://doi.org/10.1109/CVPR.2019.00293
https://doi.org/10.48550/arXiv.1708.05123
https://doi.org/10.21105/joss.05027


Wang, X., Liu, T., & Miao, J. (2019). A deep probabilistic model for customer lifetime value
prediction. arXiv Preprint arXiv:1912.07753.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T.,
Louf, R., Funtowicz, M., & others. (2019). Huggingface’s transformers: State-of-the-art
natural language processing. arXiv Preprint arXiv:1910.03771.

Wu, C., Wu, F., Qi, T., Huang, Y., & Xie, X. (2021). Fastformer: Additive attention can be
all you need. arXiv Preprint arXiv:2108.09084.

Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual transformations
for deep neural networks. Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 1492–1500. https://doi.org/10.1109/CVPR.2017.634

Xu, J., Pan, Y., Pan, X., Hoi, S., Yi, Z., & Xu, Z. (2022). RegNet: Self-regulated network
for image classification. IEEE Transactions on Neural Networks and Learning Systems.
https://doi.org/10.1109/TNNLS.2022.3158966

Yang, Y., Zha, K., Chen, Y., Wang, H., & Katabi, D. (2021). Delving into deep imbalanced
regression. International Conference on Machine Learning, 11842–11851.

Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., & Hovy, E. (2016). Hierarchical attention
networks for document classification. 1480–1489. https://doi.org/10.18653/v1/N16-1174

Zagoruyko, S., & Komodakis, N. (2016). Wide residual networks. arXiv Preprint
arXiv:1605.07146. https://doi.org/10.5244/c.30.87

Zhang, X., Zhou, X., Lin, M., & Sun, J. (2018). Shufflenet: An extremely efficient convolutional
neural network for mobile devices. Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 6848–6856. https://doi.org/10.1109/CVPR.2018.00716

Zaurin, & Mulinka. (2023). pytorch-widedeep: A flexible package for multimodal deep learning. Journal of Open Source Software, 8(86), 5027.
https://doi.org/10.21105/joss.05027.

6

https://doi.org/10.1109/CVPR.2017.634
https://doi.org/10.1109/TNNLS.2022.3158966
https://doi.org/10.18653/v1/N16-1174
https://doi.org/10.5244/c.30.87
https://doi.org/10.1109/CVPR.2018.00716
https://doi.org/10.21105/joss.05027

	Summary
	Statement of need
	The Model Hub
	The wide component
	The deeptabular component
	The deepimage component
	The deeptext component

	Forms of model training:
	Contribution
	Acknowledgements
	References

