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Summary
The alns Python package provides a complete implementation of the adaptive large neigh-
bourhood search (ALNS) metaheuristic algorithm (Pisinger & Røpke, 2010; Røpke & Pisinger,
2006). ALNS has quickly become a favourite in the field of operations research for solving
difficult combinatorial problems, including the vehicle routing problem and various scheduling
problems. Our package has an easy-to-use API and includes various stopping criteria, a large set
of acceptance criteria based on Santini et al. (2018), and multiple operator selection schemes.
Furthermore, it supports many other single-trajectory neighbourhood search algorithms as
special cases, including iterated local search (ILS), variable neighbourhood search (VNS), and
the greedy randomised adaptive search procedure (GRASP). The package has already been
successfully used for research into methodological improvements of ALNS itself (Reijnen et
al., 2022), and for the development of a high-quality ALNS metaheuristic solving an industry
problem (Wouda et al., 2023). Because of this success, we expect the package to be useful to
the wider operations research community.

Statement of need
Several software libraries exist that facilitate the implementation of metaheuristics (Parejo et
al., 2012). The most widely-used libraries generally focus on population-based evolutionary
algorithms and multi-objective optimization, for example DEAP (Fortin et al., 2012), ECJ

(Scott & Luke, 2019), jMetal (Durillo & Nebro, 2011), Metaheuristics.jl (Mejía-de-Dios
& Mezura-Montes, 2022), and PySwarms (Miranda, 2018). As such, these libraries provide
limited functionality for single-trajectory algorithms like ALNS. Among libraries that focus on
single-trajectory algorithms are Paradiseo (Dreo et al., 2021), and Chips-n-Salsa (Cicirello,
2020). Neither provides an implementation of the ALNS algorithm out of the box. Finally, the
ALNS library by Santini (2019) is a problem-agnostic implementation of ALNS in C++. This
library provides a number of acceptance criteria, but supports only the roulette wheel operator
selection scheme of Røpke & Pisinger (2006).

Despite the existence of these software libraries, it remains common in the operations research
community to re-implement heuristics (Swan et al., 2022). Such implementations are relatively
limited, are typically tied tightly to one particular problem domain, and often implement just a
single acceptance criterion and operator selection scheme. The survey of Windras Mara et
al. (2022) corroborates these claims: 205 out of the 251 papers they survey only consider
a simulated annealing acceptance criterion, and only one paper uses an operator selection
scheme that is not based on the roulette wheel mechanism of Røpke & Pisinger (2006). This
inhibits experimentation with different aspects of the algorithm, and makes re-use by others
or in other problem domains difficult. Our alns package, by contrast, offers a clear and
problem-agnostic API for using the ALNS algorithm, and provides many acceptance criteria and

Wouda, & Lan. (2023). ALNS: a Python implementation of the adaptive large neighbourhood search metaheuristic. Journal of Open Source
Software, 8(81), 5028. https://doi.org/10.21105/joss.05028.

1

https://orcid.org/0000-0003-2463-0309
https://orcid.org/0000-0001-7479-0218
https://doi.org/10.21105/joss.05028
https://github.com/openjournals/joss-reviews/issues/5028
https://github.com/N-Wouda/ALNS
https://doi.org/10.5281/zenodo.7551649
https://3d.bk.tudelft.nl/hledoux
https://orcid.org/0000-0002-1251-8654
https://github.com/skadio
https://github.com/kenohori
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05028


operator selection schemes. Additionally, we provide diagnostic statistics, plotting methods,
logging, and the ability to register custom callbacks at various points of the search. These
allow researchers and practitioners to rapidly develop state-of-the-art metaheuristics in a wide
range of problem domains.

Features
At its core, ALNS is an iterative ruin-and-recreate algorithm that runs until some stopping
criterion is met. The algorithm starts with some initial solution. In each iteration, the current
solution is transformed into a new candidate solution using problem-specific destroy and repair
operators, which are selected via an operator selection scheme. The candidate solution is then
evaluated by an acceptance criterion, and possibly replaces the current solution. Based on
the outcome of that evaluation, the operator selection scheme updates the likelihood that the
applied operators are selected again in the next iteration.

The alns Python package offers:

• A complete ALNS implementation, supported by an extensive test suite. This imple-
mentation supports user-defined callbacks whenever a new solution is found, including
when that new solution is a new global best, which could be used to support additional
intensification methods. Furthermore, it can be supplied with arbitrary user-defined
destroy and repair operators that are tailored to the user’s problem domain.

• Multiple acceptance criteria in alns.accept. These include standard ones like hill-
climbing and simulated annealing, and several variants of record-to-record travel and the
great deluge criteria (Dueck, 1993).

• Several operator selection schemes in alns.select. These include the original (seg-
mented) roulette wheel mechanism of Røpke & Pisinger (2006), and an upper confidence
bound bandit algorithm adapted from Hendel (2022).

• Various stopping criteria in alns.stop based on maximum run-times or iterations. This
includes a criterion that stops after a fixed number of iterations without improvement,
which could be used to restart the search.

• Diagnostic statistics collection and plotting methods that can be accessed after solving.

The package can easily be installed through pip, and our detailed documentation is available
here. To get started using alns, a user must provide:

• A solution state for their problem that implements an objective() function.
• An initial solution using this solution state.
• One or more destroy and repair operators tailored to the problem.

We provide a quickstart template in our documentation, where these elements are listed
as ‘TODO’. The documentation also provides several complete implementations of ALNS
metaheuristics solving instances of the travelling salesman problem, capacitated vehicle routing
problem, cutting stock problem, permutation flow shop problem, and the resource-constrained
project scheduling problem. These implementations will help users quickly get started solving
their own problems using alns.
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