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Summary
Machine learning (ML) force fields use ML models to predict the energy (and forces) given a
chemical system defined by a set of atomic coordinates. Fingerprint-based and graph-based ML
force fields are two major categories of atomistic machine-learning models. Fingerprint-based
models convert the atomic coordinates into fixed-length “feature vectors” that are used as
inputs to regression models such as neural networks or kernel ridge regression, while graph-based
systems convert the coordinates into a molecular graph which is directly input into a deep
learning model. Fingerprint-based approaches tend to require less training data and be more
interpretable, while graph-based models are typically able to handle more complex chemical
systems and are more accurate in the limit of large datasets. Fingerprint-based models are
widely used due to their conceptual similarity to traditional force-fields, but most existing
packages for fingerprint-based neural network force fields are limited to systems with relatively
few (< 5) elements and relatively small (< 106) datasets.

This work introduces AmpTorch, a Python/C++ package that leverages the Gaussian Multipole
(GMP) fingerprinting scheme to build atomistic neural network models (Lei & Medford, 2022).
It provides an efficient training routine scalable to ∼ 106 training points, is compatible
with many-element systems (50+ elements), and supports statistically rigorous uncertainty
quantification (UQ) during the prediction step (Hu et al., 2022). The fingerprint-based
structure provides relatively simple models compared to graph-based alternatives, and the
structure of the fingerprinting scheme allows the package to handle systems with an arbitrary
number of elements and arbitrary boundary conditions (isolated, periodic, semi-periodic).

AmpTorch is a PyTorch adaptation of the Atomistic Machine-learning Package AMP (Khorshidi
& Peterson, 2016). It maintains the modular structure of AMP, with separate modules for
generating fingerprints and training neural network models. AmpTorch supports standard
symmetry function fingerprints and high-dimensional neural network potentials, but is able
to scale to larger datasets and more complex chemical systems than AMP or other existing
codes for feature-based ML potentials (for example, Atom-Centered Symmetry Functions
(Behler, 2015) whose fingerprinting dimension scales with the number of elements). AmpTorch

outsources traditional boilerplate trainer code to Skorch (Tietz et al., 2017). Skorch serves
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as a PyTorch wrapper that allows users to easily modify traditional neural network training
strategies. AmpTorch’s use of Skorch allows users to trivially modify training strategies, model
architectures, and hyperparameters.

The scalability of AmpTorch is a result of its fingerprinting scheme, software design, and
database management. The GMP fingerprints have a fixed vector length regardless of the
number of elements, and using Gaussian functions allows all necessary integrals to be computed
analytically. The analytical solutions are coupled with a C++ implementation, ensuring the
efficiency of the fingerprint calculation. The GMP fingerprints are also naturally compatible
with the SingleNN (Liu & Kitchin, 2020) neural network structure, allowing for neural networks
that have the same architecture and number of fitted parameters regardless of the number of
elements present in the dataset.

In addition, AmpTorch leverages the B-tree-based database management library, LMDB (Chu &
Hedenfalk, 2010), to resolve possible memory issues when it comes to loading and training
on large datasets. This allows AmpTorch to be trained on datasets that are too large to fit
into temporary memory, although reading and writing data from LMDB is slower than using
temporary memory.

AmpTorch also implements UQ as an optional feature during the prediction. Supported UQ
methods include the ensemble method, dropout neural network method, and methods based on
latent distances. In particular, AmpTorch includes an implementation of a highly scalable new
approach that leverages distances in the latent space and the “conformal prediction” statistical
technique to provide statistically rigorous error bars on complex pre-trained models.

AmpTorch is designed using standards from the ASE package for handling atomic structures
(Hjorth Larsen et al., 2017). It takes a list of ase.Atoms objects with energy (and forces) as
input and output ase.Calculator object that can be used to compute the energy (and forces)
with the trained model. This structure allows for easy integration with active learning packages
such as FINETUNA (Musielewicz et al., 2022) and data visualization tools such as ElectroLens

(Lei et al., 2019).

Statement of need
There are numerous software packages for both constructing and applying ML force-fields.
These include packages that are based on deep learning and graph convolutional models,
kernel-based regression models, and neural networks with fixed feature vectors. Of these
packages, only graph convolutional codes have been demonstrated for extremely large and
complex datasets with > 10 elements and > 1M training points such as the OC20 dataset in
Open Catalyst Project (Chanussot et al., 2021). However, at inference time, adapting these
often complex architectures with 1-100M parameter models into atomistic simulation interfaces
seeking extremely fast calls is a challenging task. On the other hand, all existing packages for
training feature-based models are limited in both the number of elements they can handle (due
to the poor scaling of feature vector size) and the number of training points (due to scaling of
training kernel-based models and memory management issues in most codes). Thus, AMPTorch
aims to fill this gap by developing a toolkit to train fingerprint-based neural network force
fields on datasets of an arbitrary number of chemical elements. For this reason, we expect that
the code will be widely used by researchers seeking to train ML force-field models for complex
systems that can be integrated with existing atomistic simulation pipelines.
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