
AmpTorch: A Python package for scalable
fingerprint-based neural network training on
multi-element systems with integrated uncertainty
quantification
Muhammed Shuaibi1*, Yuge Hu 2*, Xiangyun Lei2, Benjamin M. Comer2,
Matt Adams1, Jacob Paras3, Rui Qi Chen2, Eric Musa4, Joseph
Musielewicz1, Andrew A. Peterson 5, Andrew J. Medford 2, and Zachary
Ulissi 1¶

1 Department of Chemical Engineering, Carnegie Mellon University, United States 2 Department of
Chemical and Biomolecular Engineering, Georgia Institute of Technology, United States 3 School of
Physics and School of Computer Science, Georgia Institute of Technology, United States 4 Department
of Chemical Engineering, University of Michigan, United States 5 School of Engineering, Brown
University, United States ¶ Corresponding author * These authors contributed equally.

DOI: 10.21105/joss.05035

Software
• Review
• Repository
• Archive

Editor: David Hagan
Reviewers:

• @ml-evs
• @ianfhunter

Submitted: 22 August 2022
Published: 26 July 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Machine learning (ML) force fields use ML models to predict the energy (and forces) given a
chemical system defined by a set of atomic coordinates. Fingerprint-based and graph-based ML
force fields are two major categories of atomistic machine-learning models. Fingerprint-based
models convert the atomic coordinates into fixed-length “feature vectors” that are used as
inputs to regression models such as neural networks or kernel ridge regression, while graph-based
systems convert the coordinates into a molecular graph which is directly input into a deep
learning model. Fingerprint-based approaches tend to require less training data and be more
interpretable, while graph-based models are typically able to handle more complex chemical
systems and are more accurate in the limit of large datasets. Fingerprint-based models are
widely used due to their conceptual similarity to traditional force-fields, but most existing
packages for fingerprint-based neural network force fields are limited to systems with relatively
few (< 5) elements and relatively small (< 106) datasets.

This work introduces AmpTorch, a Python/C++ package that leverages the Gaussian Multipole
(GMP) fingerprinting scheme to build atomistic neural network models (Lei & Medford, 2022).
It provides an efficient training routine scalable to ∼ 106 training points, is compatible
with many-element systems (50+ elements), and supports statistically rigorous uncertainty
quantification (UQ) during the prediction step (Hu et al., 2022). The fingerprint-based
structure provides relatively simple models compared to graph-based alternatives, and the
structure of the fingerprinting scheme allows the package to handle systems with an arbitrary
number of elements and arbitrary boundary conditions (isolated, periodic, semi-periodic).

AmpTorch is a PyTorch adaptation of the Atomistic Machine-learning Package AMP (Khorshidi
& Peterson, 2016). It maintains the modular structure of AMP, with separate modules for
generating fingerprints and training neural network models. AmpTorch supports standard
symmetry function fingerprints and high-dimensional neural network potentials, but is able
to scale to larger datasets and more complex chemical systems than AMP or other existing
codes for feature-based ML potentials (for example, Atom-Centered Symmetry Functions
(Behler, 2015) whose fingerprinting dimension scales with the number of elements). AmpTorch

outsources traditional boilerplate trainer code to Skorch (Tietz et al., 2017). Skorch serves

Shuaibi et al. (2023). AmpTorch: A Python package for scalable fingerprint-based neural network training on multi-element systems with
integrated uncertainty quantification. Journal of Open Source Software, 8(87), 5035. https://doi.org/10.21105/joss.05035.

1

https://orcid.org/0000-0003-3648-7749
https://orcid.org/0000-0003-2855-9482
https://orcid.org/0000-0001-8311-9581
https://orcid.org/0000-0002-9401-4918
https://doi.org/10.21105/joss.05035
https://github.com/openjournals/joss-reviews/issues/5035
https://github.com/ulissigroup/amptorch
https://doi.org/10.5281/zenodo.8151492
https://www.quant-aq.com/meet-the-team
https://orcid.org/0000-0001-5111-4671
https://github.com/ml-evs
https://github.com/ianfhunter
https://creativecommons.org/licenses/by/4.0/
https://skorch.readthedocs.io/en/stable/
https://doi.org/10.21105/joss.05035


as a PyTorch wrapper that allows users to easily modify traditional neural network training
strategies. AmpTorch’s use of Skorch allows users to trivially modify training strategies, model
architectures, and hyperparameters.

The scalability of AmpTorch is a result of its fingerprinting scheme, software design, and
database management. The GMP fingerprints have a fixed vector length regardless of the
number of elements, and using Gaussian functions allows all necessary integrals to be computed
analytically. The analytical solutions are coupled with a C++ implementation, ensuring the
efficiency of the fingerprint calculation. The GMP fingerprints are also naturally compatible
with the SingleNN (Liu & Kitchin, 2020) neural network structure, allowing for neural networks
that have the same architecture and number of fitted parameters regardless of the number of
elements present in the dataset.

In addition, AmpTorch leverages the B-tree-based database management library, LMDB (Chu &
Hedenfalk, 2010), to resolve possible memory issues when it comes to loading and training
on large datasets. This allows AmpTorch to be trained on datasets that are too large to fit
into temporary memory, although reading and writing data from LMDB is slower than using
temporary memory.

AmpTorch also implements UQ as an optional feature during the prediction. Supported UQ
methods include the ensemble method, dropout neural network method, and methods based on
latent distances. In particular, AmpTorch includes an implementation of a highly scalable new
approach that leverages distances in the latent space and the “conformal prediction” statistical
technique to provide statistically rigorous error bars on complex pre-trained models.

AmpTorch is designed using standards from the ASE package for handling atomic structures
(Hjorth Larsen et al., 2017). It takes a list of ase.Atoms objects with energy (and forces) as
input and output ase.Calculator object that can be used to compute the energy (and forces)
with the trained model. This structure allows for easy integration with active learning packages
such as FINETUNA (Musielewicz et al., 2022) and data visualization tools such as ElectroLens

(Lei et al., 2019).

Statement of need
There are numerous software packages for both constructing and applying ML force-fields.
These include packages that are based on deep learning and graph convolutional models,
kernel-based regression models, and neural networks with fixed feature vectors. Of these
packages, only graph convolutional codes have been demonstrated for extremely large and
complex datasets with > 10 elements and > 1M training points such as the OC20 dataset in
Open Catalyst Project (Chanussot et al., 2021). However, at inference time, adapting these
often complex architectures with 1-100M parameter models into atomistic simulation interfaces
seeking extremely fast calls is a challenging task. On the other hand, all existing packages for
training feature-based models are limited in both the number of elements they can handle (due
to the poor scaling of feature vector size) and the number of training points (due to scaling of
training kernel-based models and memory management issues in most codes). Thus, AMPTorch
aims to fill this gap by developing a toolkit to train fingerprint-based neural network force
fields on datasets of an arbitrary number of chemical elements. For this reason, we expect that
the code will be widely used by researchers seeking to train ML force-field models for complex
systems that can be integrated with existing atomistic simulation pipelines.

Acknowledgements
The authors are grateful for funding from the U.S. Department of Energy’s Basic Energy
Science, Computational Chemical Sciences Program Office, under Award No. DE-SC0019441.

Shuaibi et al. (2023). AmpTorch: A Python package for scalable fingerprint-based neural network training on multi-element systems with
integrated uncertainty quantification. Journal of Open Source Software, 8(87), 5035. https://doi.org/10.21105/joss.05035.

2

http://www.lmdb.tech/doc/
https://pubs.acs.org/doi/10.1021/acscatal.0c04525
https://doi.org/10.21105/joss.05035


Behler, J. (2015). Constructing high-dimensional neural network potentials: A tutorial review.
International Journal of Quantum Chemistry, 115(16), 1032–1050. https://doi.org/10.
1002/qua.24890

Chanussot, L., Das, A., Goyal, S., Lavril, T., Shuaibi, M., Riviere, M., Tran, K., Heras-Domingo,
J., Ho, C., Hu, W., Palizhati, A., Sriram, A., Wood, B., Yoon, J., Parikh, D., Zitnick, C.
L., & Ulissi, Z. (2021). Open Catalyst 2020 (OC20) Dataset and Community Challenges.
ACS Catalysis, 11(10), 6059–6072. https://doi.org/10.1021/acscatal.0c04525

Chu, H., & Hedenfalk, M. (2010). Lightning Memory-Mapped Database Manager (LMDB).

Hjorth Larsen, A., JØrgen Mortensen, J., Blomqvist, J., Castelli, I. E., Christensen, R., Dułak,
M., Friis, J., Groves, M. N., Hammer, B., Hargus, C., Hermes, E. D., Jennings, P. C., Bjerre
Jensen, P., Kermode, J., Kitchin, J. R., Leonhard Kolsbjerg, E., Kubal, J., Kaasbjerg, K.,
Lysgaard, S., … Jacobsen, K. W. (2017). The atomic simulation environment—a Python
library for working with atoms. Journal of Physics: Condensed Matter, 29(27), 273002.
https://doi.org/10.1088/1361-648X/AA680E

Hu, Y., Musielewicz, J., Ulissi, Z. W., & Medford, A. J. (2022). Robust and scalable uncertainty
estimation with conformal prediction for machine-learned interatomic potentials. Machine
Learning: Science and Technology, 3(4), 045028. https://doi.org/10.1088/2632-2153/
ACA7B1

Khorshidi, A., & Peterson, A. A. (2016). Amp: A modular approach to machine learning
in atomistic simulations. Computer Physics Communications, 207, 310–324. https:
//doi.org/10.1016/j.cpc.2016.05.010

Lei, X., Hohman, F., Chau, D. H. P., & Medford, A. J. (2019). ElectroLens: Understanding
Atomistic Simulations Through Spatially-resolved Visualization of High-dimensional Fea-
tures. 2019 IEEE Visualization Conference, VIS 2019, 196–200. https://doi.org/10.48550/
arxiv.1908.08381

Lei, X., & Medford, A. J. (2022). A Universal Framework for Featurization of Atomistic
Systems. Journal of Physical Chemistry Letters, 13(34), 7911–7919. https://doi.org/10.
1021/acs.jpclett.2c02100

Liu, M., & Kitchin, J. R. (2020). SingleNN: Modified Behler-Parrinello Neural Network
with Shared Weights for Atomistic Simulations with Transferability. Journal of Physical
Chemistry C, 124(32), 17811–17818. https://doi.org/10.1021/acs.jpcc.0c04225

Musielewicz, J., Wang, X., Tian, T., & Ulissi, Z. (2022). FINETUNA: fine-tuning accelerated
molecular simulations. Machine Learning: Science and Technology, 3(3). https://doi.org/
10.1088/2632-2153/ac8fe0

Tietz, M., Fan, T. J., Nouri, D., & Bossan, B. (2017). skorch: A scikit-learn compatible neural
network library that wraps PyTorch.

Shuaibi et al. (2023). AmpTorch: A Python package for scalable fingerprint-based neural network training on multi-element systems with
integrated uncertainty quantification. Journal of Open Source Software, 8(87), 5035. https://doi.org/10.21105/joss.05035.

3

https://doi.org/10.1002/qua.24890
https://doi.org/10.1002/qua.24890
https://doi.org/10.1021/acscatal.0c04525
https://doi.org/10.1088/1361-648X/AA680E
https://doi.org/10.1088/2632-2153/ACA7B1
https://doi.org/10.1088/2632-2153/ACA7B1
https://doi.org/10.1016/j.cpc.2016.05.010
https://doi.org/10.1016/j.cpc.2016.05.010
https://doi.org/10.48550/arxiv.1908.08381
https://doi.org/10.48550/arxiv.1908.08381
https://doi.org/10.1021/acs.jpclett.2c02100
https://doi.org/10.1021/acs.jpclett.2c02100
https://doi.org/10.1021/acs.jpcc.0c04225
https://doi.org/10.1088/2632-2153/ac8fe0
https://doi.org/10.1088/2632-2153/ac8fe0
https://doi.org/10.21105/joss.05035

	Summary
	Statement of need
	Acknowledgements

