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Summary
SubZero is a conceptually new discrete element sea ice model geared to explicitly simulate the
life cycles of individual floes by using polygonal elements with time-evolving boundaries. This
unique model uses parameterizations of floe-scale processes, such as collisions, rafting, ridging,
fracturing, and welding, to simulate the behavior on sea ice floes subject to mechanical and
thermodynamic forcing in confined or periodic domains. SubZero enables the exploration of a
wide range of floe interaction rules and fracture criteria to further our understanding of sea
ice mechanics, including distributions of floe sizes, thicknesses, and shapes. Figure 1 shows
snapshots from a validation study where SubZero simulates floes moving through a channel. A
complete model description and example process studies demonstrating its capabilities can
be found in Manucharyan & Montemuro (2022). SubZero was developed using MATLAB
(MATLAB, 2020), leveraging its built-in functions for polygonal operations. The model source
code has been archived to Zenodo (Montemuro & Manucharyan, 2022).
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Figure 1: The evolution of sea ice floes as they pass through the Nares Strait (between Canada and
Greenland), including (a) initial floe state with the inset showing the location of Nares Strait, (b) floes
shortly after sea ice breakup that occurred after about three days, and (c) floe state after ten days when
many floes have passed through the Nares Strait. The initial distribution of floes was generated using a
Voronoi tessellation, and the subsequent evolution of floe shapes is only subject to floe fractures. In this
simulation, the complex initial floe shapes near the land become simpler and more convex as they break
up. The green box in panel (a) shows the modeled part of Nares Strait. The blue arrows represent sea
ice velocity after averaging floe momentum on an Eulerian grid.

Statement of need
Sea ice dynamics span a wide range of scales. At length scales O(10–100) km and smaller
(where O designates the order of magnitude), sea ice exhibits granular behavior as individual
floes and fracture networks become evident (Rothrock & Thorndike, 1984; Stern et al., 2018;
Zhang et al., 2015). Sea ice motion at relatively large scales, O(100 km), is commonly
represented in climate models using continuous rheological models, like the viscous-plastic
model (Hibler, 1979), which have not been formally derived from basic sea ice physics but have
been postulated instead. The rheology defines a relationship between sea ice stress caused
by floe-floe or floe-lead interactions, to the large scale deformation of ice cover, the material
properties of sea ice, and the state of the ice cover. As such, the rheological models carry
potentially large uncertainties in representing sea ice dynamics. They are also not designed to
represent the scales of motion at which individual floes start to influence dynamics (Coon et
al., 2007).

Developed initially in the context of granular assembles and rock dynamics (Cundall & Strack,
1979; Potyondy & Cundall, 2004), Discrete Element Models (DEMs) are an alternative to
continuous rheology models. DEMs can be computationally demanding because they represent
media as a collection of many colliding bonded elements with specified shapes and contact
laws. DEMs resort to setting the interaction laws between their elements and strive to calibrate
them using micro-scale observations because the continuous equations of motion are often
unknown. Existing floe-scale sea ice DEMs use bonded elements of simple preset shapes like
disks (Chen et al., 2021; Damsgaard et al., 2018; Herman, 2013), polygons (Kulchitsky et al.,
2017), or tetrahedra (Liu & Ji, 2018) to represent complex floe geometries. However, floe-scale
modeling remains challenging due to difficulties reconciling discrete elements’ idealized nature
with complex floe-scale observations. Observations indicate that ice floes vary dramatically in
size and shape and change over time due to various processes like fractures, rafting/ridging,
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lateral growth/melt, welding, etc. Therefore, using prescribed element shapes creates ambiguity
about what elements and bonds between them represent. It is difficult to search for direct
correspondence between the state variables of existing sea ice DEMs and real observations
without a clear understanding of what an individual DEM element represents.

SubZero was designed as an alternative to continuous rheology models and existing sea ice
DEMs to improve the realism of sea ice simulations at floe scales. Floes undergo many
processes that affect their shapes, including fracturing, ridging/rafting, and welding, making
them concave. In contrast with existing sea ice models that use elements of pre-defined simple
shapes, SubZero uses concave polygonal elements that are free to evolve in complexity in
response to these parameterized floe-scale processes. The model’s capability of developing floe
shapes naturally might bring us closer to direct model validation using floe-scale observations
and advance our understanding of sea ice physics through idealized process studies.
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