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Summary
In the past decade, incorporating data-driven AI techniques in system design has become
mainstream in almost all branches of science and technology. Typically, systems powered by
AI tend to be rather complex, far beyond human understanding. Naturally, one cannot always
develop trust in such complex, so-called black-box systems, restricting their widespread use in
safety-critical domains.

To generate trust in systems, a standard approach in Explainable AI is to build simple
explanations using human-understandable models. A number of recent works (Neider &
Gavran, 2018) (Camacho & McIlraith, 2019) (Roy et al., 2020) have identified models in
temporal logic to be both formal and explainable. Among temporal logics—Linear Temporal
Logic (LTL)—arguably the most widely used temporal logic, has received particular focus due
to its resemblance to natural language. Moreover, LTL is a de-facto standard in several fields
of computer science, including model-checking, program analysis, and motion planning for
robotics.

Scarlet is one of the most competitive tools for learning explainable models in LTL (Raha et
al., 2022). To learn such models, it relies on positive (or desirable) and negative (or undesirable)
executions of the system under consideration. Based on the executions, it learns a concise
model in LTL that is consistent with the given executions.

Let us consider a concrete example to understand Scarlet’s functioning. Consider a robot
that has been designed to collect wastebin contents in an office-like environment. For the sake
of the example, in this environment, let there be an office 𝑜 with a wastebin, a hallway ℎ, and
a container 𝑐 to accumulate the waste. The following could be the possible executions of the
robot:

ℎ, ℎ, ℎ, ℎ, 𝑜, ℎ, 𝑐, ℎ
ℎ, ℎ, ℎ, ℎ, ℎ, 𝑐, ℎ, 𝑜, ℎ, ℎ

Let the first execution be positive since the robot first collects waste from the office and then
accumulates in the container. Further, let the second execution be negative since the robot tries
to accumulate the waste in the container even before it collects from the office. From these
executions, Scarlet learns a model F(o and FX c), where the F-operator stands for “finally”
and X-operator stands for “next”. This model, in simple words, expresses that: eventually, the
robot should visit the office 𝑜 and then, at a later point, should visit the container 𝑐.
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Statement of need
The fundamental problem solved by Scarlet is to build an explainable model in the form of
an LTL formula from system executions, formally termed as traces.

Scarlet is a tool built entirely in Python 3. It can be run using its command-line features or
its Python API hosted in PyPi. Its main capabilities include:

• construction of an LTL formula from execution traces,
• generation of execution traces from an LTL formula for testing LTL learning algo-

rithms (using automata-based techniques, such as LTLf2DFA and MONA, and random
sampling).

Scarlet additionally supports noisy data: the user can specify a noise threshold (between zero
and one, zero for perfect classification) and the algorithm returns an almost separating formula
with respect to that threshold.

Key insights
A paper presenting the algorithms behind Scarlet was published in TACAS’2022: Tools and
Algorithms for the Construction and Analysis of Systems (Raha et al., 2022).

We believe that the path to scalability for learning models in LTL is to leverage normal forms
for LTL formulas and derive efficient enumeration algorithms from them. Scarlet combines
two insights:

• An efficient enumeration algorithm for directed LTL formulas, which are formulas that
can be evaluated only moving forward in traces,

• An algorithm solving the Boolean set cover problem, which constructs Boolean com-
binations of already constructed formulas in order to separate positive and negative
traces.

For experimental results, refer to the full paper (Raha et al., 2022).

Related works
For learning models in LTL, several approaches have been proposed, leveraging SAT solvers
(Neider & Gavran, 2018), automata (Camacho & McIlraith, 2019), and Bayesian inference
(Kim et al., 2019). In fact, there are approaches for many temporal logics such as Property
Specification Language (PSL) (Roy et al., 2020), Computational Tree Logic (CTL) (Ehlers et
al., 2020) (Roy & Neider, 2023), Metric Temporal Logic (MTL) (Raha et al., 2023), etc.

Applications of LTL learning include program specification (Lemieux et al., 2015), anomaly
and fault detection (Bombara et al., 2016), robotics (Chou et al., 2020), and many more: we
refer to (Camacho & McIlraith, 2019) for a list of practical applications. An equivalent point
of view on LTL learning is as a specification mining question. The ARSENAL (Ghosh et al.,
2016) and FRET (Giannakopoulou et al., 2020) projects construct LTL specifications from
natural language; see (Li, 2013) for an overview.

The two state-of-the-art tools for learning logic formulas from examples are:

• FLIE (Neider & Gavran, 2018) infers minimal LTL formulas using a learning algorithm
that is based on constraint solving (SAT solving).

• SYSLITE (Arif et al., 2020) infers minimal past-time LTL formulas using an enumerative
algorithm implemented in a tool called CVC4SY (Reynolds et al., 2019).

Existing methods do not scale beyond formulas of small size, making them hard to deploy for
industrial cases. A second serious limitation is that they often exhaust computational resources
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without returning any results. Indeed theoretical studies (Fijalkow & Lagarde, 2021) have
shown that constructing the minimal LTL formula is NP-hard already for very small fragments
of LTL, explaining the difficulties found in practice.
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