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Summary
Phase-type distributions describe the time until absorption of a continuous or discrete-time
Markov chain (Bladt & Nielsen, 2017). The probabilistic properties of phase-type distributions
(i.e., the probability density function, cumulative distribution function, quantile function,
moments and generating functions) are well-described and analytically tractable using matrix
manipulations.

Phase-type distributions have traditionally been used in actuarial sciences and queuing theory,
and, more recently, in population genetics. In order to facilitate the use of phase-type theory
in population genetics, we present PhaseTypeR, a general-purpose and user-friendly R (R Core
Team, 2021) package which contains all key functions —mean, (co)variance, probability density
function, cumulative distribution function, quantile function and random sampling— for both
continuous and discrete phase-type distributions. Importantly, univariate and multivariate
reward transformations are implemented for continuous and discrete phase-type distributions.
Multivariate reward transformations have great potential for applications in population genetics,
and we have included two examples. The first is concerned with the easy calculation of the
variance-covariance matrix for the site frequency spectrum (SFS) of the 𝑛-coalescent, and
the second is concerned with the correlation between tree heights in the two-locus ancestral
recombination graph.

Statement of need
In recent years, the usefulness of phase-type theory in population genetics has become evident.
Important quantities in population genetics such as the time until the most recent ancestor,
the total tree length, the total number of segregating sites, and the site frequency spectrum
follow phase-type distributions (Hobolth et al., 2019). There are already several other R
packages that model phase-type distributions, such as actuar (Dutang et al., 2008), mapfit
(Hiroyuki Okamura, 2015; Hiroyuki Okamura & Dohi, 2015; H. Okamura & Dohi, 2016) or
matrixdist (Albrecher et al., 2022; Albrecher & Bladt, 2019). However, these packages only
model univariate continuous phase-type distributions, do not include reward transformations,
and are tailored to actuarial sciences and queuing theory.

To overcome these limitations, we present PhaseTypeR, an R package with easy-to-use, general-
purpose phase-type functions, which is particularly well suited for population genetics. The
package has already been used in Hobolth et al. (2021) to model the site frequency spectrum
using multivariate phase-type theory, and we believe that its intuitive implementation will
encourage more population geneticists to use phase-type theory.
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Overview
PhaseTypeR contains general implementations of core functions for continuous and discrete
phase-type distributions, for both the univariate and multivariate cases. These include the
mean and (co)variance of phase-type distributions; their density, probability and quantile
functions; functions for random draws; and functions for reward transformations.

Table 1 provides an overview of the PhaseTypeR functions for a univariate continuous phase-type
distribution 𝜏 ∼ PH(𝛼, 𝑇), where 𝛼 is the initial distribution and 𝑇 the sub-intensity matrix.
Let {𝑋(𝑡) ∶ 𝑡 ≥ 0} denote the corresponding continuous-time Markov chain (CTMC). The
reward transformation is then given by 𝑌 = ∫𝜏

0
𝑟(𝑋(𝑡))𝑑𝑡, where 𝜏 is the time to absorption,

and 𝑌 is also phase-type distributed (Bladt & Nielsen, 2017). If the CTMC has 𝑝 transient
states, then the reward function 𝑟(𝑖), 𝑖 = 1,… , 𝑝, is a vector of length 𝑝.

Table 1: formulas and corresponding PhaseTypeR functions for univariate continuous phase-type distribu-
tions. The vector 𝑎 determines the initial probabilities, 𝑇 is the sub-intensity matrix, 𝑒 is a vector with 1
in every entry, and r is the reward vector.

Quantity Formula Function
PH object 𝜏 ∼ PH(𝑎, 𝑇) PH(T, a)

Mean E[𝜏 ] = 𝑎(−𝑇)−1𝑒 mean(PH)

Variance V[𝜏 ] = E[𝜏2] − E[𝜏 ]2 var(PH)

Density 𝑓(𝑥) = 𝑎 exp(𝑇𝑥)(−𝑇𝑒),
𝑥 ≥ 0

dPH(x, PH)

Cumulative distribution 𝐹(𝑥) = 1 − 𝑎 exp(𝑇𝑥)𝑒,
𝑥 ≥ 0

pPH(x, PH)

Quantile function qPH(p, PH)

Random sampling rPH(n, PH)

Random sampling of full path rFullPH(n, PH)

Reward transformation 𝑌 = ∫𝜏
0
𝑟(𝑋(𝑡))𝑑𝑡 reward_phase_type(PH, r)

Table 2 provides an overview of the PhaseTypeR functions for the univariate discrete phase-type
distribution. Here, the reward transformation is given by Campillo Navarro (2018). Table 3
gives an overview of the multivariate phase-type distribution. A multivariate phase-type
distribution is the joint distribution of (𝑌1,… , 𝑌𝑘) where 𝑌𝑗 = ∫𝜏

0
𝑟𝑗(𝑋(𝑡))𝑑𝑡 for 𝑗 = 1,… , 𝑘.

We summarize the rewards 𝑟𝑗(𝑖) in a matrix 𝑅 with 𝑝 rows (corresponding to the transient
states) and 𝑘 columns (corresponding to the 𝑘 reward functions) with entries 𝑅𝑖𝑗 = 𝑟𝑗(𝑖).

Table 2: Formulas and corresponding PhaseTypeR functions for univariate discrete phase-type distributions.
The vector 𝑎 determines the initial probabilities, 𝑇 is the sub-transition matrix, 𝑒 is a vector with one in
every entry, 𝐼 is the identity matrix, and r is the reward vector.

Quantity Formula Function
DPH object 𝜏 ∼ DPH(𝑎, 𝑇) DPH(T, a)

Mean E[𝜏 ] = 𝜋(𝐼 − 𝑇)−1𝑒 mean(DPH)

Variance V[𝜏 ] = E[𝜏2] − E[𝜏 ]2 var(DPH)

Density 𝑓(𝑥) = 𝜋𝑇 𝑥−1𝑡, 𝑥 ≥ 1 dDPH(x, DPH)

Cumulative distribution 𝐹(𝑥) = 1 − 𝜋𝑇 𝑥𝑒, 𝑥 ≥ 1 pDPH(x, DPH)

Quantile function qDPH(p, DPH)

Random sampling rDPH(n, DPH)

Random sampling of full path rFullDPH(n, DPH)

Reward transformation 𝑌 = ∑𝜏−1
𝑚=0 𝑟(𝑋𝑚) reward_phase_type(DPH, r)
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Table 3: PhaseTypeR functions for multivariate continuous and multivariate discrete phase-type distribu-
tions. a is the vector of initial probabilities, T is the sub-intensity matrix and R is the reward matrix. For
information about the formulas for calculating the covariances, please see Bladt & Nielsen (2017).

Quantity Continuous Discrete
Multivariate PH object MPH(T, a, R) MDPH(T, a, R)

Mean mean(MPH) mean(MDPH)

(Co)variance var(MPH) var(MDPH)

Density dMPH(x, MPH) dMDPH(x, MDPH)

Cumulative distribution pMPH(x, MPH) pMDPH(x, MDPH)

Quantile function qMPH(p, MPH) qMDPH(p, MDPH)

Random sampling rMPH(n, MPH) rMDPH(n, MDPH)

Random sampling of full path rFullMPH(n, MPH) rFullMDPH(n, MDPH)

Example 1: variance-covariance matrix of the SFS
This section concerns reproducing the table associated with Theorem 2.2 in Durrett (2008),
which can be used to derive the variance of the elements of the site frequency spectrum (SFS)
and the covariance between pairs of elements of the SFS.

Let 𝜉𝑖 be the 𝑖’th element of the site frequency spectrum, i.e., 𝜉1 is the number of singletons,
𝜉2 is the number of doubletons, etc. Let’s also define 𝐿𝑖, which is the total branch length
leading to 𝜉𝑖. Theorem 3.1 in Hobolth et al. (2019) states that the vector 𝐿 = (𝐿1,… , 𝐿𝑛−1)
has a multivariate phase-type distribution

𝐿 ∼ MPH(𝑒1, 𝑇,𝑅),

where 𝑅 and 𝑇 are respectively the state-space and the sub-transition matrix of the so-called
“block-counting process”, and 𝑒1 = (1, 0,… , 0). Conditionally on 𝐿, the 𝜉𝑖’s are independent
and Poisson distributed, 𝜉𝑖 ∣ 𝐿𝑖 ∼ Poisson (𝐿𝑖

𝜃
2), where 𝜃 is the underlying mutation rate

(Wakeley, 2009). By the law of total variance, we have

Var[𝜉] = 𝜃2

4
Σ + 𝜃

2
diag(E[𝐿]).

where diag(⋅) is the diagonal matrix whose entries are given by E[𝐿]. It is well-known that
E[𝐿𝑖] = 1/𝑖, but the expressions for the entries of Σ are fairly complicated (Durrett, 2008; Fu,
1995). However as seen below, numeric calculation of Σ is straightforward using phase-type
theory, since we just need to specify the subintensity matrix 𝑇 and the reward matrix 𝑅 for
the block-counting process.

Accompanying our package are a number of vignettes, which illustrate the use of phase-type
distribution in population genetics. As part of one of these vignettes, we include a function
that calculates 𝑅 and 𝑇 for the block-counting process with sample size 𝑛, which is shown
below:

RateMAndStateSpace <- function(n){

## --------- State space ---------

# Size of the state space (number of states)

nSt <- partitions::P(n)

# Definition of the state space

StSpM <- matrix(ncol=n,nrow=nSt)

# Set of partitions of [n]

x <- partitions::parts(n)

# Rewriting the partitions as (a1,...,an)

for (i in 1:nSt) {
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st <- x[,i]

StSpM[i,] <- tabulate(x[,i],nbins=n)

}

# Reordering

StSpM <- StSpM[order(rowSums(StSpM),decreasing=TRUE),]

# Below the diagonal the entries are always zero

## --------- Intensity matrix ---------

RateM <- matrix(0,ncol=nSt,nrow=nSt)

for (i in 1:(nSt-1)){

for (j in (i+1):nSt){

cvec <- StSpM[i,]-StSpM[j,]

# Two branches are merged, i.e. removed from state i

check1 <- sum(cvec[cvec>0])==2

# One new branch is created, i.e. added in state from j

check2 <- sum(cvec[cvec<0])==-1

if (check1 & check2){

# Size(s) of the block(s) and the corresponding rates

tmp <- StSpM[i,which(cvec>0)]

RateM[i,j] <- ifelse(length(tmp)==1,tmp*(tmp-1)/2,prod(tmp))

}

}

}

# Diagonal part of the rate matrix

for (i in 1:nSt){

RateM[i,i] <- -sum(RateM[i,])

}

list(RateM=RateM,StSpM=StSpM)

}

We can now define a multivariate phase-type distribution such that 𝐿 ∼ MPH(𝛼, 𝑇,𝑅). This
is straightforward to build in PhaseTypeR with the MPH() function. For 𝑛 = 8:

n <- 8

RMASS <- RateMAndStateSpace(n)

m <- dim(RMASS$RateM)[1]

# Obtain subintensity matrix

subintensity_matrix <- RMASS$RateM[1:(m-1),1:(m-1)]

# The reward matrix is the state space matrix of the block counting process

rew_mat <- RMASS$StSpM[1:(m-1),1:(n-1)]

# The initial probability vector

init_probs <- c(1, rep(0, n-2))

# Define MPH object

ph_rew_obj <- MPH(subintensity_matrix, init_probs, rew_mat)

Σ/4 can now be directly calculated using var():

var_covar_mat <- var(ph_rew_obj)

round(0.25*var_covar_mat, 4)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0.3211 -0.0358 -0.0210 -0.0141 -0.0103 -0.0079 0.1384

[2,] -0.0358 0.2495 -0.0210 -0.0141 -0.0103 0.1328 -0.0356

[3,] -0.0210 -0.0210 0.2076 -0.0141 0.1283 -0.0346 -0.0267

[4,] -0.0141 -0.0141 -0.0141 0.3173 -0.0359 -0.0275 -0.0216

[5,] -0.0103 -0.0103 0.1283 -0.0359 0.1394 -0.0230 -0.0183

[6,] -0.0079 0.1328 -0.0346 -0.0275 -0.0230 0.1310 -0.0159

[7,] 0.1384 -0.0356 -0.0267 -0.0216 -0.0183 -0.0159 0.1224
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This yields the same variance-covariance matrix as in Theorem 2.2 in Durrett (2008) without
the need for analytical derivations.

Example 2: the coalescent with recombination
The traditional procedure for deriving the correlation between the branch lengths in two loci
for a sample of size two is by a first-step analysis (e.g., section 7 in Wakeley, 2009). In this
section, we exemplify the easy use of PhaseTypeR to obtain the same result.

The state space and transition rates for the two-locus ancestral recombination graph is shown
in Figure 1. The filled circles represent material ancestral to the sample, and the crosses
indicate that the most recent common ancestor has been found. The lines between the circles
or crosses indicate if the ancestral material is present on the same chromosome. The starting
state is state 1 at present day with two samples from the same chromosome.

The time 𝜏 when both loci have found their common ancestor is PH(𝑒1, 𝑆) distributed with
𝑒1 = (1, 0,… , 0) and

𝑆 =
⎛⎜⎜⎜⎜⎜
⎝

−(1 + 2𝜌/2) 2𝜌/2 0 0 0
1 −(3 + 𝜌/2) 𝜌/2 1 1
0 4 −6 1 1
0 0 0 −1 0
0 0 0 0 −1

⎞⎟⎟⎟⎟⎟
⎠

,

where 𝜌 is the recombination rate.

The tree height 𝑇left in the left locus is the first time the ancestral process {𝑋(𝑡) ∶ 𝑡 ≥ 0}
enters state 4 or state 6 or, equivalently, the time spent in state 1, 2, 3 and 5 before absorption
in state 6. We therefore have

𝑇left = min{𝑡 ≥ 0 ∶ 𝑋(𝑡) ∈ {4, 6}} = ∫
𝜏

0
𝑟left(𝑋𝑡)𝑑𝑡

with the reward vector 𝑟left = (1, 1, 1, 0, 1). Similarly, the tree height 𝑇right in the right locus
is the first time the ancestral process enters state 5 or state 6 or, equivalently, the time spent
in state 1, 2, 3 and 4 before absorption in state 6. We therefore have

𝑇right = min{𝑡 ≥ 0 ∶ 𝑋(𝑡) ∈ {5, 6}} = ∫
𝜏

0
𝑟right(𝑋𝑡)𝑑𝑡

with the reward vector 𝑟right = (1, 1, 1, 1, 0). A classical result in population genetics gives the
covariance between the two tree heights

Cov(𝑇left, 𝑇right) =
𝜌 + 18

𝜌2 + 13𝜌 + 18
,

and we note that for large recombination rates Cov(𝑇left, 𝑇right) is close to zero, and for small
recombination rates it is close to one. Also note that 𝑇left and 𝑇right are both exponentially dis-
tributed with a rate of 1, so Var(𝑇left) = Var(𝑇right) = 1, and, consequently, Cor(𝑇left, 𝑇right) =
Cov(𝑇left, 𝑇right) (see also equation 3.10 in Wakeley, 2009). Moreover, as shown by a simple
proof in Wilton et al. (2015), we have that 𝑃(𝑇left = 𝑇right) = Cov(𝑇left, 𝑇right).
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Figure 1: Two-locus ancestral recombination graph. Filled circles represent uncoalesced sites, while
crosses represent coalesced sites. 𝜌 is the recombination rate.

An implementation using PhaseTypeR simply consists of specifying the initial distribution, rate
matrix for the ancestral process, rewards for the two tree heights, and calling the variance
function var() for the multivariate phase-type distribution.

recomb_rate <- 0.3

ARG_subint_mat <- function(recomb_rate) {

matrix(

c(-(1+2*recomb_rate/2), 2*recomb_rate/2, 0, 0, 0,

1, -(3+recomb_rate/2), recomb_rate/2, 1, 1,

0, 4, -6, 1, 1,

0, 0, 0, -1, 0,

0, 0, 0, 0, -1),

nrow=5, byrow=TRUE)

}

subintensity_matrix <- ARG_subint_mat(recomb_rate)

initial_probabilities <- c(1, 0, 0, 0, 0)

# T_left: T_MRCA in left locus

reward_left <- c(1, 1, 1, 0, 1)

# T_right: T_MRCA in right locus

reward_right <- c(1, 1, 1, 1, 0)

# Joint distribution T_joint of T_left and T_right

T_joint <- MPH(subintensity_matrix,

initial_probabilities,

matrix(c(reward_left, reward_right), nrow = 5))

var(T_joint)[1, 2]

[1] 0.8321965

We can see that the phase-type result is equal to the classical formula provided above when
𝜌 = 0.3.

From this multivariate phase-type representation of the ancestral recombination graph (ARG),
we can simulate, for example, 1,000 samples from the joint distribution of (𝑇left, 𝑇right) using
rMPH(1000, T_joint) in PhaseTypeR. If the recombination rate 𝜌 is set to a small value, then
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most of the samples will result in 𝑇left = 𝑇right, and the joint density will concentrate along
the diagonal, as shown in Figure 2, left (Simonsen & Churchill, 1997). If instead 𝜌 is large,
then most of the samples will result in 𝑇left ≠ 𝑇right (Figure 2, right).

# Simulation from the joint distribution

subintensity_matrix_09 <- ARG_subint_mat(0.166)

Tab_09 <- MPH(subintensity_matrix_09, initial_probabilities,

matrix(c(reward_left, reward_right), nrow=5))

subintensity_matrix_01 <- ARG_subint_mat(11.316)

Tab_01 <- MPH(subintensity_matrix_01, initial_probabilities,

matrix(c(reward_left, reward_right), nrow=5))

set.seed(3)

rTab_09 <- rMPH(1000, Tab_09)

rTab_01 <- rMPH(1000, Tab_01)
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Figure 2: Random samples from the two-locus ancestral recombination graph. Left: recombination rate
𝜌 = 0.166 and 𝑃(𝑇left = 𝑇right) = 0.9. Right: recombination rate 𝜌 = 11.316 and 𝑃(𝑇left = 𝑇right) = 0.1.

Conclusion
We have described PhaseTypeR, an easy-to-use package for the analysis of time-homogeneous
evolutionary models in population genetics. We have included two examples: (1) the mean and
variance for the SFS of the 𝑛-coalescent with mutation, and (2) the correlation for the tree
height in the two-locus coalescent with recombination. The multiple merger coalescent (Birkner
& Blath, 2021), the two-island model (Legried & Terhorst, 2022) and the seed bank coalescent
(Casanova et al., 2022) constitute other coalescent models where phase-type analyses have
been useful. We hope that population geneticists will take advantage of PhaseTypeR in future
analyses of coalescent models.
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