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Summary
Universal Numbers Library, or simply Universal, is a comprehensive, self-contained C++
header-only template library that provides implementations of various number representations
and standard arithmetic operations on arbitrary configurations of integer and real numbers
(Omtzigt et al., 2020). With its extensive collection of number systems, including integers,
decimals, fixed-points, rationals, linear floats, tapered floats, logarithmic, SORNs, interval,
level-index, and adaptive-precision binary and decimal integers and floats, Universal offers a
robust verification suite for each system.

Using a posit number as an example, the basic pattern to use a custom Universal type is:

#include <universal/number/posit/posit.hpp>

template<typename Real>

Real MyKernel(const Real& a, const Real& b) {

return a * b; // replace this with your kernel computation

}

constexpr double pi = 3.14159265358979323846;

int main() {

using Real = sw::universal::posit<32,2>;

Real a = sqrt(2);

Real b = pi;

std::cout << "Result: " << MyKernel(a, b) << std::endl;

}

Universal delivers software and hardware co-design capabilities to develop low and mixed-
precision algorithms for reducing energy consumption in signal processing, Industry 4.0, machine
learning, robotics, and high-performance computing applications (Omtzigt & Quinlan, 2022).
The package includes command-line tools for visualizing and interrogating numeric encodings,
an interface for setting and querying bits, and educational examples showcasing performance
gain and numerical accuracy with the different number systems. Finally, Docker containers are
available to experiment with the library without cloning the repo and building the source code.

$ docker pull stillwater/universal

$ docker run -it --rm stillwater/universal bash

Universal was originally established in 2017 as a reference implementation of the evolving
unum Type III (posit and valid) standard for bit-level arithmetic. However, as the demand for
supporting a diverse range of number systems grew, Universal evolved into a complete platform
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for numerical analysis and computational mathematics, capable of solving problems such as
large factorials using adaptive-precision integers and serving as Oracles using adaptive-precision
floats. Many projects have leveraged Universal, including the Matrix Template Library (MTL4),
Geometry + Simulation Modules (G+SMO), Bembel (a fast IGA BEM solver), and the Odeint
ODE solver.

The default build configuration will produce the command line tools, a playground, and
educational and application examples. It is also possible to construct the full regression suite
across all the number systems. For instance, the shortened output for the commands single

and single 1.23456789 are below.

$ single

min exponent -125

max exponent 128

radix 2

radix digits 24

min 1.17549e-38

max 3.40282e+38

lowest -3.40282e+38

epsilon (1+1ULP-1) 1.19209e-07

round_error 0.5

denorm_min 1.4013e-45

infinity inf

quiet_NAN nan

signaling_NAN nan

...

$ single 1.23456789

scientific : 1.2345679

triple form : (+,0,0b00111100000011001010010)

binary form : 0b0.0111'1111.001'1110'0000'0110'0101'0010

color coded : 0b0.0111'1111.001'1110'0000'0110'0101'0010

Statement of need
The demand for high-performance computing (HPC), machine learning, and deep learning
has grown significantly in recent years (e.g., Carmichael et al., 2019; Cococcioni et al., 2022;
Desrentes et al., 2022), leading to increased environmental impact and financial cost due to
their high energy consumption for storage and processing (Haidar, Abdelfattah, et al., 2018).
To address these challenges, researchers are exploring ways to reduce energy consumption
through redesigning algorithms and minimizing data movement and processing. The use of
multi-precision arithmetic in hardware is also becoming more prevalent (Haidar, Tomov, et al.,
2018). NVIDIA has added support for low-precision formats in its GPUs to perform tensor
operations (Choquette et al., 2021), including a 19-bit format with an 8-bit exponent and 10-bit
mantissa (see also (Intel Corporation, 2018; Kharya, 2020). Additionally, Google has developed
the “Brain Floating Point Format,” known as “bfloat16,” which enables the training and
operation of deep neural networks using Tensor Processing Units (TPUs) at higher performance
and lower cost (Wang & Kanwar, 2019). This trend towards low-precision numerics is driving
the redesign of many standard algorithms, particularly in the field of energy-efficient linear
solvers, which is a rapidly growing area of research (Carson & Higham, 2018; Haidar et al.,
2017; Haidar, Tomov, et al., 2018; Haidar, Abdelfattah, et al., 2018; Higham et al., 2019).

While the primary motivation for low-precision arithmetic is its high performance and energy
efficiency, mixed-precision algorithm designs aim to identify and exploit opportunities to
rightsize the number system used for critical computational paths representing the execution

Omtzigt, & Quinlan. (2023). Universal Numbers Library: Multi-format Variable Precision Arithmetic Library. Journal of Open Source Software,
8(83), 5072. https://doi.org/10.21105/joss.05072.

2

https://doi.org/10.21105/joss.05072


bottleneck. Furthermore, when these algorithms are incorporated into embedded devices and
custom hardware engines, we approach optimal performance and power efficiency. Therefore,
investigations into computational mathematics and measuring mixed-precision algorithms’
accuracy, efficiency, robustness, and stability are needed.

Custom number systems that optimize the entire system’s performance are crucial components
to imbue embedded systems with more autonomy. Likewise, energy efficiency is an essential
differentiator for embedded intelligence applications. By observing distinct arithmetic require-
ments of the control and data flow, many performance and power efficiency gains can be
achieved when developing unique compute solutions. It is essential to consider the precision
requirements and the necessary dynamic range of arithmetic operations when optimizing these
compute engines.

Verification Suite
Each number system contained within Universal is supported by a comprehensive verification
environment testing library class API consistency, logic and arithmetic operators, the standard
math library, arithmetic exceptions, and language features such as compile-time constexpr.
The verification suite is run as part of the make test command in the build directory.

Due to the size of the library, the build system for Universal allows for fine-grain control to
subset the test environment for productive development and verification. There are twelve
core build category flags defined:

• BUILD_APPLICATIONS

• BUILD_BENCHMARKS

• BUILD_CI

• BUILD_CMD_LINE_TOOLS

• BUILD_C_API

• BUILD_DEMONSTRATION

• BUILD_EDUCATION

• BUILD_LINEAR_ALGEBRA

• BUILD_MIXEDPRECISION_SDK

• BUILD_NUMBERS

• BUILD_NUMERICS

• BUILD_PLAYGROUND

The flags, when set during cmake configuration, i.e., cmake -DBUILD_CI=ON .., enable build
targets specialized to the category. For example, the BUILD_CI flag turns on the continuous
integration regression test suites for all number systems, and the BUILD_APPLICATIONS flag will
build all the example applications that provide demonstrations of mixed-precision, high-accuracy,
reproducible and/or interval arithmetic.

Each build category contains individual targets that further refine the build targets. For
example, cmake -DBUILD_NUMBER_POSIT=ON -DBUILD_DEMONSTRATION=OFF .. will build just
the fixed-size, arbitrary configuration posit number system regression environment.

It is also possible to run specific test suite components, for example, to validate algorithmic
changes to more complex arithmetic functions, such as square root, exponent, logarithm, and
trigonometric functions. Here is an example, assuming that the logarithmic number system
has been configured during the cmake build generation:

$ make lns_trigonometry
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The repository’s README file has all the details about the build and regression environment
and how to streamline its operation.

Availability and Documentation
Universal Number Library is available under the MIT License. The package may be cloned or
forked from the GitHub repository. Documentation is provided via docs, including a tutorial
introducing primary functionality and detailed reference and communication networks. The
library employs extensive unit testing.
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