The Journal of Open Source Software

DOI: 10.21105/joss.05073

Software
= Review @@
= Repository @
= Archive 7

Editor: Martin Fleischmann @
Reviewers:

= @gassmoeller
= @kaustavbhattacharjee

Submitted: 28 October 2022
Published: 15 February 2023

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0

International License (CC BY 4.0).

GeoHexViz: A Python package for the visualizing
hexagonally binned geospatial data

Tony M. Abou Zeidan @' and Mark Rempel ©?

1 Canadian Joint Operations Command, Ottawa, Canada, 1600 Star Top Road, K1B 3W6 2 Defence
Research and Development Canada, Ottawa, Canada, 101 Colonel By Dr., K1A 0K2

Summary

Geospatial visualization is often used in military operations research to convey analyses to both
analysts and decision makers. For example, it has been used to help commanders coordinate
units within a geographic region (Feibush et al., 2000), to depict how terrain impacts vehicle
performance (Laskey et al., 2010), and inform training decisions in order to meet mission
requirements (Goodrich et al., 2019). When such analyses include a large amount of point-like
data, combining geospatial visualization and binning — in particular, hexagonal binning given its
properties such as having the same number of neighbours as sides, the centre of each hexagon
being equidistant from the centres of its neighbours, and that hexagons tile densely on curved
surfaces (Carr et al., 1992; Sinha, 2019) — is an effective way to summarize and communicate
the data. Recent examples in the military and public safety domains include assessing the
impact of infrastructure on Arctic operations (Hunter et al., 2021) and communicating the
spatial distribution of COVID-19 cases (Shaito & Elmasri, 2021) respectively.

However, creating such visualizations may be difficult for many since it requires in-depth
knowledge of both Geographic Information Systems and analytical techniques, not to mention
access to software that may require a paid license, training, and in some cases knowledge of a
programming language such as Python or JavaScript. To help reduce these barriers, GeoHexViz
— which produces publication-quality geospatial visualizations with hexagonal binning — is a
Python package that provides a simple interface, requires minimal in-depth knowledge, and
either limited or no programming. The result is an analyst being able to spend more time
doing analysis and less time producing visualizations.

GeoHexViz is accessible at https://github.com/mrempel/geohexviz and is installed via a
setup.py script. In addition, a technical report describing the design and a set of detailed
examples (T. Abou Zeidan & Rempel, 2021) may be accessed at https://cradpdf.drdc-
rddc.gc.ca/PDFS/unc381/p814091_Alb.pdf.

Statement of need

Creating geospatial visualizations is often time-consuming and laborious (Vartak et al., 2014).
For example, an analyst must make a variety of design decisions, including which map projection
to use, the colour scheme, the basemap, and how to organize the data in layers. The resulting
design may be implemented using one of many software packages, including:

= ArcGIS (Ersi, 2021) which provides a wide range of capabilities, but requires a paid
license and a solid foundation in geospatial information processing (GISGeography, 2021);

= QGIS (QGIS Development Team, 2021) which is free and open source, but like ArcGIS
requires in-depth knowledge of geospatial information processing to be used effectively
(GrindGIS, 2021);

Zeidan, & Rempel. (2023). GeoHexViz: A Python package for the visualizing hexagonally binned geospatial data. Journal of Open Source Software, 1
8(82), 5073. https://doi.org/10.21105/joss.05073.


https://orcid.org/0000-0001-5103-3070
https://orcid.org/0000-0002-6248-1722
https://doi.org/10.21105/joss.05073
https://github.com/openjournals/joss-reviews/issues/5073
https://github.com/mrempel/geohexviz
https://doi.org/10.5281/zenodo.7613525
https://martinfleischmann.net
https://orcid.org/0000-0003-3319-3366
https://github.com/gassmoeller
https://github.com/kaustavbhattacharjee
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05073

JEISS

The Journal of Open Source Software

= D3 (Bostock et al., 2011) which emphasizes web standards rather than a proprietary
framework, but requires extensive knowledge of JavaScript; and

= Plotly (Plotly, 2021) which is a free and open source Python graphing library, but like
D3 and other packages requires knowledge of a programming language.

Common across these applications is the requirement to have knowledge of geospatial concepts,
and acquiring this knowledge has been identified as a significant challenge (Rickles et al., 2017;
Sipe & Dale, 2003). In addition, the latter two options require programming. While many
analysts have programming experience, not all do and in time-sensitive situations, as often
encountered in a military setting, writing code to produce a visualization may not be feasible.
With this in mind, GeoHexViz aims to reduce the time, in-depth knowledge, and programming
required to produce publication-quality geospatial visualizations that use hexagonal binning.
Implemented in Python, it seamlessly integrates several existing Python packages — Pandas,
GeoPandas, Uber H3, Shapely, and Plotly — and extends their functionality to achieve these
goals. Although originally designed for use within the military operations research community,
it is expected that GeoHexViz may be of use in other communities as well.

Features

In order to generate a publication-quality geospatial visualization, GeoHexViz requires an
analyst to specify a set of layers — where each layer is defined as a “[group] of point, line, or
area (polygon) features representing a particular class or type of real-world entities” (Caliper,
2021) — to be visualized. At a minimum, an analyst must specify one layer, the hexbin layer,
through a set of required properties: first, a reference, such as the location of a CSV file, to
the point-like data to be hexagonally binned; and second, references to the data containing
the latitude, longitude, and value at each coordinate, e.g., columns names in the CSV file. If
a value at each coordinate is not specified, a value of one is assumed by default, i.e., it is
assumed there is one event per coordinate. In addition, optional properties may be defined,
such as the function to be applied to the values, i.e., count, sum, max, and the resolution of the
hexagons (as defined by Uber H3). Default values for these optional properties are provided by
GeoHexViz; for example, the default function applied is sum.

With this single layer, GeoHexViz generates a publication-quality visualization. However, if the
visualization is not satisfactory, GeoHexViz enables an analyst to modify the visualization's
properties. These properties may be categorized into two groups: first, those that use
functionality provided by GeoHexViz that both integrates and extends its underlying libraries;
and second, those that are passed directly to Plotly without modification. The first group of
properties are:

= scale: the data displayed in the visualization may be on a linear (default) or logarithmic
scale;

= colour scale: the colour scale of the visualization may be continuous (default) or discrete;

= colour scale opacity: the opacity of the colour scale may be set between opaque (default)
to transparent;

= focus: the visualization may have no focal point (default), showing a view of the whole
Earth, or may be focused on one or more layers; and

= filter: all the data may be present in the visualization (default) or may be clipped to a
geographic region.

The second group includes a range of properties provided by Plotly, such as border colour, land
colour, sea colour, figure size, etc. While default values for these are set by Plotly, many are
overwritten by GeoHexViz in order to produce a publication-quality visualization out of the
box.

Beyond the hexbin layer, an analyst may specify a variable number of optional layers, which
include four types: region, outline, point, and grid. Region layers are plotted as filled polygons
via Plotly Choropleth traces. Outline layers behave similarly to region layers; however, they

Zeidan, & Rempel. (2023). GeoHexViz: A Python package for the visualizing hexagonally binned geospatial data. Journal of Open Source Software, 2
8(82), 5073. https://doi.org/10.21105/joss.05073.


https://doi.org/10.21105/joss.05073

The Journal of Open Source Software

are plotted as empty polygons via Plotly Scattergeo traces. Point layers enable an analyst
to display additional point-like data, such as cities, on top of the hexbin layer. This layer is
plotted via Plotly Scattergeo traces. In situations in which the data to be hexagonally binned
does not cover the entire area of interest, grid layers, which are empty hexagons, may be
specified to form a continuous grid of hexagons. Similar to the hexbin layer, each optional
layer has its own set of properties, some of which are required in order to define the layer while
others are optional with defaults provided.

GeoHexViz enables an analyst to create a visualization in two ways. First, an analyst may
use GeoHexViz's command-line script GeoHexSimple to read a JSON file that specifies the
layers. Second, an analyst may generate a visualization by writing Python code that imports
GeoHexViz's Python module and invokes its functions. In either case, the data to be hexagonally
binned may be provided in a variety of formats, including Shapefile and CSV. In addition, when
using the Python script method the data may be provided as a DataFrame (McKinney, 2021)
or GeoDataFrame (Jordahl, 2021). The visualization may be saved in a variety of formats,
including PDF, PNG, JPEG, WEBP, SVG, and EPS formats.

Example: Aerial bombings in World War 2

Allied aerial bombing in World War 2 occurred across a vast geographic region, with the focus
shifting as the war progressed. In this example, a data set compiled by Lt Col Jenns Robertson of
the United States Air Force and posted on Kaggle (Robertson, 2017) is used in conjunction with
GeoHexViz to depict how this focus in Europe shifted over time. The examples/ww2_bombings
directory in the GeoHexViz repository contains a JSON file json_structure.json that, in
combination with a command-line script, creates a visualization for either 1943, 1944, or
1945 by setting the path to the corresponding CSV file. For example, the total mass of
bombs dropped by Allied forces in 1943 is depicted in Figure 1. Similar visualizations for
1944 and 1945 are provided in the aforementioned directory, plus json_walkthrough.md which
explains the contents of the JSON file. The directory also includes the corresponding Python
code python_walkthrough.py that creates these visualizations, and a Jupyter Notebook
python_walkthrough. ipynb that explains how the Python code creates the visualization.

Zeidan, & Rempel. (2023). GeoHexViz: A Python package for the visualizing hexagonally binned geospatial data. Journal of Open Source Software, 3
8(82), 5073. https://doi.org/10.21105/joss.05073.


https://doi.org/10.21105/joss.05073

The Journal of Open Source Software

100000

10000

1000

100

10

[=2z8e

1

Figure 1: Total mass of Allied aerial bombs dropped in Europe in 1943 (mass in tons).

Limitations

GeoHexViz uses the GeoJSON format to plot data sets. With GeoJSON comes difficulties
when geometries cross the 180th meridian; they may be interpreted as wrapping around the
globe (MacWright, 2016). In GeoHexViz, hexagonal geometries are supplied via Uber H3 (Uber
Technologies, Inc., 2020), and as such this issue has been discussed with its developers (Tony
Abou Zeidan, 2021b). GeoHexViz provides a simple solution to address this problem; it tracks
geometries that cross the meridian and shifts their coordinates making all of the coordinates
either positive or negative as previously proposed (MacWright, 2016). However, it should be
noted that when hexagons contain either the North or South Pole, the 180th meridian issue
persists, resulting in what appears to be a colour bleeding throughout the visualization and
leaving a hexagon (or hexagons) empty.

A second issue is related to the positioning and height of the colour bar with respect to the
plot area. When the dimensions of the plot area are not within a specific range of aspect
ratios, the colour bar position and height may not be optimal. This issue has been raised
with the Plotly development team (Tony Abou Zeidan, 2021a). As this is an issue with Plotly
itself, the library's developers have indicated that a calculation of plot area dimensions may be
available in a future release which would address in this issue.

Lastly, GeoHexViz relies on the Python binding of the Uber H3 package in order to generate
hexagons over polygons. This is done by passing the GeoJSON format of the polygon(s) to
Uber H3. When the polygon size is large, grids may not generate properly resulting in no
hexagons, or multiple invalid hexagons, being retrieved from Uber H3. Based on our experience,
this issue does not seem to be widely discussed and a solution does not seem to exist at this
time.

Zeidan, & Rempel. (2023). GeoHexViz: A Python package for the visualizing hexagonally binned geospatial data. Journal of Open Source Software, 4
8(82), 5073. https://doi.org/10.21105/joss.05073.


https://doi.org/10.21105/joss.05073

SS

The Journal of Open Source Software

Acknowledgements

Thank you to Nicholi Shiell for his input in testing, and providing advice for the development
of this package and of its supporting documents.

References

Abou Zeidan, Tony. (2021a). [Feature request | bug report] plot area / colorbar size variance
(geos). https://github.com/plotly/plotly.py/issues/3288

Abou Zeidan, Tony. (2021b). Q: Invalidity of polygons in GeoJSON, GeoPandas. https:
//github.com /uber/h3-py /issues/187

Abou Zeidan, T., & Rempel, M. (2021). GeoHexViz—Geospatial visualization using hexagonal
binning software: Design reference and instruction manual (DRDC-RDDC-2021-D183).
Defence Research; Development Canada. https://cradpdf.drdc-rddc.gc.ca/PDFS/unc381/
p814091_ Alb.pdf

Bostock, M., Ogievetsky, V., & Heer, J. (2011). D3 data-driven documents. IEEE Transactions
on Visualization and Computer Graphics, 17(12), 2301-2309. https://doi.org/10.1109/
TVCG.2011.185

Caliper. (2021). What is a layer? Caliper Mapping; Transportation Glossary. https://www.
caliper.com/glossary/what-is-a-map-layer.htm

Carr, D. B., Olsen, A. R., & White, D. (1992). Hexagon mosaic maps for display of univariate
and bivariate geographical data. Cartography and Geographic Information Systems, 19(4),
228-236. https://doi.org/10.1559/152304092783721231

Ersi. (2021). ArcGIS online. https://www.arcgis.com/

Feibush, E., Gagvani, N., & Williams, D. (2000). Visualization for situational awareness. |[EEE
Computer Graphics and Applications, 20(5), 38—45. https://doi.org/10.1109/38.865878

GISGeography. (2021). ArcGlS review: Is ArcMap the best GIS software? https://gisgeography.
com/esri-arcgis-software-review-guide/

Goodrich, D. C., Heilman, P., Guertin, D., Levick, L. R., Burns, |., Armendariz, G., & Wei, H.
(2019). Automated geospatial watershed assessment (AGWA) to aid in sustaining military
mission and training. USDA-ARS Southwest Watershed Research Center (SWRC) Tucson
United States. https://apps.dtic.mil/sti/citations/AD1092333

GrindGIS. (2021). Pros and cons of QGIS. https://grindgis.com /software/pros-and-cons-of-qgis

Hunter, G., Chan, J., & Rempel, M. (2021). Assessing the impact of infrastructure on
arctic operations (Scientific Report DRDC-RDDC-2021-R024). Defence Research and
Development Canada. https://cradpdf.drdc-rddc.gc.ca/PDFS/unc356/p812844_Alb.pdf

Jordahl, K. (2021). GeoPandas (0.9.0). https://geopandas.org/index.html

Laskey, K. B., Wright, E. J., & da Costa, P. C. G. (2010). Envisioning uncertainty in
geospatial information. International Journal of Approximate Reasoning, 51(2), 209-223.
https://doi.org/10.1016/j.ijar.2009.05.011

MacWright, T. (2016). The 180th meridian. In macwright.com. https://macwright.com/
2016/09/26 /the-180th-meridian.html

McKinney, W. (2021). Pandas.DataFrame. https://pandas.pydata.org/docs/reference/api/
pandas.DataFrame.html

Plotly. (2021). Plotly python open source graphing library. Plotly. https://plotly.com/python/

Zeidan, & Rempel. (2023). GeoHexViz: A Python package for the visualizing hexagonally binned geospatial data. Journal of Open Source Software, 5
8(82), 5073. https://doi.org/10.21105/joss.05073.


https://github.com/plotly/plotly.py/issues/3288
https://github.com/uber/h3-py/issues/187
https://github.com/uber/h3-py/issues/187
https://cradpdf.drdc-rddc.gc.ca/PDFS/unc381/p814091_A1b.pdf
https://cradpdf.drdc-rddc.gc.ca/PDFS/unc381/p814091_A1b.pdf
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://www.caliper.com/glossary/what-is-a-map-layer.htm
https://www.caliper.com/glossary/what-is-a-map-layer.htm
https://doi.org/10.1559/152304092783721231
https://www.arcgis.com/
https://doi.org/10.1109/38.865878
https://gisgeography.com/esri-arcgis-software-review-guide/
https://gisgeography.com/esri-arcgis-software-review-guide/
https://apps.dtic.mil/sti/citations/AD1092333
https://grindgis.com/software/pros-and-cons-of-qgis
https://cradpdf.drdc-rddc.gc.ca/PDFS/unc356/p812844_A1b.pdf
https://geopandas.org/index.html
https://doi.org/10.1016/j.ijar.2009.05.011
https://macwright.com/2016/09/26/the-180th-meridian.html
https://macwright.com/2016/09/26/the-180th-meridian.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
https://plotly.com/python/
https://doi.org/10.21105/joss.05073

SS

The Journal of Open Source Software

QGIS Development Team. (2021). QGIS geographic information system. QGIS Association.
https://www.qgis.org

Rickles, P., Ellul, C., & Haklay, M. (2017). A suggested framework and guidelines for
learning GIS in interdisciplinary research. Geo: Geography and Environment, 4(2), e00046.
https://doi.org/10.1002/ge02.46

Robertson, J. (2017). Aerial bombing operations in World War Il. https://www.kaggle.com/
usaf/world-war-ii

Shaito, M., & Elmasri, R. (2021). Map visualization using spatial and spatio-temporal data:
Application to COVID-19 data. The 14th Prvasive Technologies Related to Assistive
Environments Conference, 284--291. https://doi.org/10.1145/3453892.3461336

Sinha, A. (2019). Spatial modelling tidbits: Honeycomb or fishnets? Towards Data Science.
https://towardsdatascience.com/spatial-modelling-tidbits-honeycomb-or-fishnets- 7f0b19273aab

Sipe, N., & Dale, P. (2003). Challenges in using geographic information systems (GIS) to
understand and control malaria in indonesia. Malaria Journal, 2(36). https://doi.org/10.
1186/1475-2875-2-36

Uber Technologies, Inc. (2020). H3: A hexagonal hierarchical geospatial indexing system.
https://h3geo.org

Vartak, M., Madden, S., Parameswaran, A., & Polyzotis, N. (2014). SeeDB: Automatically
generating query visualizations. Proceedings of the VLDB Endowment, 7(13), 1581-1584.
https://doi.org/10.14778/2733004.2733035

Zeidan, & Rempel. (2023). GeoHexViz: A Python package for the visualizing hexagonally binned geospatial data. Journal of Open Source Software, 6
8(82), 5073. https://doi.org/10.21105/joss.05073.


https://www.qgis.org
https://doi.org/10.1002/geo2.46
https://www.kaggle.com/usaf/world-war-ii
https://www.kaggle.com/usaf/world-war-ii
https://doi.org/10.1145/3453892.3461336
https://towardsdatascience.com/spatial-modelling-tidbits-honeycomb-or-fishnets-7f0b19273aab
https://doi.org/10.1186/1475-2875-2-36
https://doi.org/10.1186/1475-2875-2-36
https://h3geo.org
https://doi.org/10.14778/2733004.2733035
https://doi.org/10.21105/joss.05073

	Summary
	Statement of need
	Features
	Example: Aerial bombings in World War 2
	Limitations
	Acknowledgements
	References

