
pycoxmunk: A python package for computing sea
surface reflectance
Simon R. Proud 1

1 National Centre for Earth Observation, RAL Space, STFC Rutherford Appleton Laboratory, Harwell,
OX11

DOI: 10.21105/joss.05074

Software
• Review
• Repository
• Archive

Editor: Pierre de Buyl
Reviewers:

• @arthur-e
• @molinav

Submitted: 08 November 2022
Published: 13 June 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Knowledge of how the sea surface reflects incoming sunlight is of key importance within satellite
remote sensing of the Earth. For example, estimating the amount of dust or pollution in the
atmosphere requires precise knowledge of the surface reflectance in order to be accurate. This
paper introduces pycoxmunk, a python library that computes both the sea surface reflectance
and the so-called Bidirectional Reflectance Distribution Function (BRDF) across the visible
and near-infrared spectrum. Pycoxmunk is designed to work with data from many of the
most commonly used satellite sensors and provides output that can be used within retrieval
algorithms or as a standalone product in its own right.

Statement of need
The amount of sunlight reflected by a water surface depends upon factors such as the wavelength
of light being examined, the wind speed - which affects wave height and the presence of white
caps atop the waves - and the presence of pigments such as chlorophyll. Satellite sensors
typically look down from space towards the water surface and hence have a good view of
surface reflectance if we assume clear sky conditions. However, the presence of clouds or
aerosols (smoke, dust, etc) can affect the measured top of atmosphere reflectance. There
exist a multitude of algorithms to detect and analyse these cloud and aerosol features, and
they typically require accurate information on the surface reflectance in order to retrieve the
atmospheric properties.

Therefore, a tool to calculate the expected sea surface reflectance for a given set of satellite
measurements and weather conditions can provide a valuable input into such retrieval algorithms.

State of the field
Previously, most retrieval algorithms have their own inbuilt method of computing this reflectance
via a wide range of approaches and algorithms. A particularly well-used approach is that first
described by Cox and Munk (Cox, 1954; Cox & Munk, 1954), and expanded upon by subsequent
research (Sayer et al., 2010). For example, the ORAC algorithm that can retrieve both cloud
and aerosol properties uses Cox-Munk at the core of its surface reflectance simulation (A.
C. Povey, 2022; Poulsen et al., 2012). However, both ORAC and other projects have their
implementations of Cox-Munk tightly bound with the rest of their codebase, meaning that
users cannot easily run just the sea surface reflectance calculation. Many remaining tools, such
as the commonly-used HydroLight algorithm that requires a purchased license to function,
are therefore also of limited accessibility. An overview of some alternative models is given in
(Zhang & Wang, 2010), showing both the limited availability of suitable reflectance models
and the good performance of the Cox-Munk technique.

Proud. (2023). pycoxmunk: A python package for computing sea surface reflectance. Journal of Open Source Software, 8(86), 5074. https:
//doi.org/10.21105/joss.05074.

1

https://orcid.org/0000-0003-3880-6774
https://doi.org/10.21105/joss.05074
https://github.com/openjournals/joss-reviews/issues/5074
https://github.com/simonrp84/PyCoxMunk
https://doi.org/10.5281/zenodo.8020079
http://pdebuyl.be/
https://orcid.org/0000-0002-6640-6463
https://github.com/arthur-e
https://github.com/molinav
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05074
https://doi.org/10.21105/joss.05074


The library introduced here, pycoxmunk, implements the Cox-Munk method in a python library
that is widely accessible without relying on custom code unique to a given retrieval system
such as ORAC. This enables a more widely applicable version of Cox-Munk than has previously
been available. In writing this library, ORAC’s fortran implementation of Cox-Munk was used
as a reference to ensure pycoxmunk produced correct output.

Algorithm details
The sea surface has an intrinsic reflectance that depends on how much light is absorbed on
the surface and reflected deeper within the water. This primarily depends on the chlorophyll
content. At present, pycoxmunk assumes a fixed fraction of clorophyll and hence a fixed
intrinsic reflectance at a given wavelength that in calm conditions, depends on the viewing
geometry:

𝜃𝑠: The angle between the sun and vertical such that an angle of 0° specifies that the sun is
directly above the target and an angle of 90° specifies that the sun is at the horizon.

𝜃𝑣: The angle between the satellite and vertical, defined as above.

𝜙𝑠: The angle between the sun and North, defined such that 0° and 180° specify that the sun
is directly North and directly South of the target respectively and likewise 90° and 270° specify
the sun being due East and West respectively.

𝜙𝑣: The angle between the satellite and North, defined as above.

Where the sun and satellite geometry is favourably aligned, on opposing sides of the target,
the sea acts like a mirror, known as specular reflection, and there is a large peak in sea surface
reflectance in the sun glint region - as shown in Fig 1b. In other geometrical conditions the
reflectance is significantly lower.

In windy conditions, the assumption of specular reflection breaks down due to wave activity
that, for high wind speeds, generates white caps atop the waves that appear very bright.
pycoxmunk accounts for white caps using a simple relation(Sayer et al., 2010):

𝜌𝑤𝑐 = 𝑅𝑤𝑐 ⋅ 2.951𝑒−6 ⋅ 𝑣3.52𝑤𝑖𝑛𝑑

Where 𝑅𝑤𝑐 is the predefined whitecap reflectance at a given wavelength and 𝑣𝑤𝑖𝑛𝑑 is the wind
speed.

Usage and integration with other libraries
pycoxmunk is designed to work in tandem with the satpy library (Raspaud et al., 2018) that
reads, calibrates and provides geometry information for many satellite sensors across a wide
range of use cases. Once a user has loaded satellite data with satpy they can then pass
satpy’s main class, the Scene, to pycoxmunk along with optional arguments to define the
user-required processing. pycoxmunk will then compute the sea surface reflectance and store
the results as additional datasets within the Scene, which are directly accessible to the user. A
key feature of satpy, which pycoxmunk builds upon, is the use of dask arrays (Rocklin, 2015)
to facilitate processing of datasets larger than the user’s total system memory. Internally, all
of pycoxmunk’s processing is done via dask. If computing the BRDF parameters, pycoxmunk
will use the numba library (Lam et al., 2015) to speed up computation of the rho_0d, rho_0v
and rho_dd terms.

To use pycoxmunk, a user first needs to load their satellite data via satpy, then pass this to
pycoxmunk’s main class, PyCoxMunk, along with a list of sensor channels to be processed.
Optionally, the user can then supply wind information in the U and V directions, preferably
at 10m height above the surface. These can be passed as either two floats (for constant
wind across the satellite image) or as arrays of equal size to the satellite data for the case of

Proud. (2023). pycoxmunk: A python package for computing sea surface reflectance. Journal of Open Source Software, 8(86), 5074. https:
//doi.org/10.21105/joss.05074.

2

https://doi.org/10.21105/joss.05074
https://doi.org/10.21105/joss.05074


per-pixel wind data. The user can also supply ‘masks’ that remove areas of no interest, such
as land pixels and cloud filled portions of the image. Lastly, the user calls retr_coxmunk_refl

to compute the final reflectances, which can then be used by accessing the PyCoxMunk.scn.

Figures

Figure 1: (a) An image from Japan’s Himawari-8 satellite at 04:10 UTC on 13th Sept 2016, Super
Typhoon Meranti is visible in the upper-center. (b) The corresponding Cox-Munk surface reflectance for
the 0.47, 0.51 and 0.64 micron channels, showing regions of sunglint and wind driven white caps.

Acknowledgements
I acknowledge the contributions of the ORAC development team for their initial creation of
the Cox-Munk code within ORAC. In particular Greg McGarragh for writing numerous versions
of the Fortran code and Andy Sayer for the original Cox-Munk formulation. This work was
funded by the Natural Environment Research Council (NERC) through the National Centre for
Earth Observation award ref. NE/R016518/1 and by a NERC Innovation fellowship, award ref.
NE/R013144/1.

References
A. C. Povey, S. R. P., G. McGarragh. (2022). ORAC: Optimal retrieval of aerosol and cloud.

In GitHub repository. GitHub. https://github.com/ORAC-CC/orac

Cox, C. (1954). Statistics of the sea surface derived from sun glitter. J. Mar. Res., 13,
198–227.

Cox, C., & Munk, W. (1954). Measurement of the roughness of the sea surface from
photographs of the sun’s glitter. Josa, 44(11), 838–850. https://doi.org/10.1364/josa.44.
000838

Lam, S. K., Pitrou, A., & Seibert, S. (2015). Numba: A llvm-based python jit compiler.
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, 1–6.

Poulsen, C., Siddans, R., Thomas, G., Sayer, A., Grainger, R., Campmany, E., Dean, S.,
Arnold, C., & Watts, P. (2012). Cloud retrievals from satellite data using optimal estima-

Proud. (2023). pycoxmunk: A python package for computing sea surface reflectance. Journal of Open Source Software, 8(86), 5074. https:
//doi.org/10.21105/joss.05074.

3

https://github.com/ORAC-CC/orac
https://doi.org/10.1364/josa.44.000838
https://doi.org/10.1364/josa.44.000838
https://doi.org/10.21105/joss.05074
https://doi.org/10.21105/joss.05074


tion: Evaluation and application to ATSR. Atmospheric Measurement Techniques, 5(8),
1889–1910. https://doi.org/10.5194/amt-5-1889-2012

Raspaud, M., Hoese, D., Dybbroe, A., Lahtinen, P., Devasthale, A., Itkin, M., Hamann, U.,
Rasmussen, L. Ø., Nielsen, E. S., Leppelt, T., & others. (2018). Pytroll: An open-source,
community-driven python framework to process earth observation satellite data. Bulletin
of the American Meteorological Society, 99(7), 1329–1336. https://doi.org/10.1175/
bams-d-17-0277.1

Rocklin, M. (2015). Dask: Parallel computation with blocked algorithms and task schedul-
ing. Proceedings of the 14th Python in Science Conference. https://doi.org/10.25080/
majora-7b98e3ed-013

Sayer, A., Thomas, G., & Grainger, R. (2010). A sea surface reflectance model for (A)ATSR,
and application to aerosol retrievals. Atmospheric Measurement Techniques, 3(4), 813–838.
https://doi.org/10.5194/amt-3-813-2010

Zhang, H., & Wang, M. (2010). Evaluation of sun glint models using MODIS measurements.
Journal of Quantitative Spectroscopy and Radiative Transfer, 111(3), 492–506. https:
//doi.org/10.1016/j.jqsrt.2009.10.001

Proud. (2023). pycoxmunk: A python package for computing sea surface reflectance. Journal of Open Source Software, 8(86), 5074. https:
//doi.org/10.21105/joss.05074.

4

https://doi.org/10.5194/amt-5-1889-2012
https://doi.org/10.1175/bams-d-17-0277.1
https://doi.org/10.1175/bams-d-17-0277.1
https://doi.org/10.25080/majora-7b98e3ed-013
https://doi.org/10.25080/majora-7b98e3ed-013
https://doi.org/10.5194/amt-3-813-2010
https://doi.org/10.1016/j.jqsrt.2009.10.001
https://doi.org/10.1016/j.jqsrt.2009.10.001
https://doi.org/10.21105/joss.05074
https://doi.org/10.21105/joss.05074

	Summary
	Statement of need
	State of the field
	Algorithm details
	Usage and integration with other libraries
	Figures
	Acknowledgements
	References

