
Sciris: Simplifying scientific software in Python
Cliff C. Kerr 1,2¶, Paula Sanz-Leon 1, Romesh G. Abeysuriya 1,3, George
L. Chadderdon 3,4, Vlad-Ştefan Harbuz5, Parham Saidi5, Maria del Mar
Quiroga 3,6, Rowan Martin-Hughes 3, Sherrie L. Kelly 3, Jamie A.
Cohen 1, Robyn M. Stuart 1,7, and Anna Nachesa8

1 Institute for Disease Modeling, Global Health Division, Bill & Melinda Gates Foundation, Seattle, USA
2 School of Physics, University of Sydney, Sydney, Australia 3 Burnet Institute, Melbourne, Australia 4
CAE USA, Tampa, USA 5 Saffron Software, Bucharest, Romania 6 Melbourne Data Analytics Platform,
The University of Melbourne, Melbourne, Australia 7 Department of Mathematical Sciences, University
of Copenhagen, Copenhagen, Denmark 8 Google, Zürich, Switzerland ¶ Corresponding author

DOI: 10.21105/joss.05076

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @tacaswell
• @aflaxman

Submitted: 24 December 2022
Published: 14 August 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Sciris aims to streamline the development of scientific software by making it easier to perform
common tasks. Sciris provides classes and functions that simplify access to frequently used
low-level functionality in the core libraries of the scientific Python ecosystem (such as numpy
for math and matplotlib for plotting), as well as in libraries of broader scope (such as
multiprocess for parallelization and pickle for saving and loading objects). While low-level
functionality is valuable for developing robust software applications, it can divert focus from
the scientific problems being solved. Some of Sciris’ key features include: ensuring consistent
dictionary, list, and array types (e.g., enabling users to provide inputs as either lists or arrays);
enabling ordered dictionary elements to be referenced by index; simplifying datetime arithmetic
by allowing date input in multiple formats, including strings; simplifying the saving and loading
of files and complex objects; and simplifying the parallel execution of code. With Sciris, users
can often achieve the same functionality with fewer lines of code, avoid reinventing the wheel,
and spend less time looking up recipes on Stack Overflow. This can make writing scientific code
in Python faster, more pleasant, and more accessible, especially for people without extensive
training in software development.

Statement of need

The landscape of scientific software
With the increasing availability of large volumes of data and computing resources, scientists
across multiple fields of research have been able to tackle increasingly complex problems. But
to harness these resources, the need for domain-specific software has become much greater. As
the complexity of the questions being tackled has increased, so too has the amount of code used
to answer them, creating a steep learning curve and significant burden of code review (Nature
Editorial Board, 2018). For some scientists, this increasing reliance on software has created a
barrier between themselves and the science they want to do. It is these people – people who
want things to “just work” rather than worry about the implementation details – who are the
primary audience for Sciris. (In contrast, people who care a lot about implementation details –
such as those who love using type hints – will likely not find Sciris to be as helpful.)

Scientific code workflows (e.g., either a full cycle in the development of a new software library,
or in the execution of a one-off analysis) typically rely on multiple codebases, including but
not limited to: low-level libraries, domain-specific open-source software, and self-developed

Kerr et al. (2023). Sciris: Simplifying scientific software in Python. Journal of Open Source Software, 8(88), 5076. https://doi.org/10.21105/joss.
05076.

1

https://orcid.org/0000-0003-2517-2354
https://orcid.org/0000-0002-1545-6380
https://orcid.org/0000-0002-9618-6457
https://orcid.org/0000-0002-3034-2330
https://orcid.org/0000-0002-8943-2808
https://orcid.org/0000-0002-3724-2412
https://orcid.org/0000-0002-6232-5586
https://orcid.org/0000-0002-8479-1860
https://orcid.org/0000-0001-6867-9265
https://doi.org/10.21105/joss.05076
https://github.com/openjournals/joss-reviews/issues/5076
https://github.com/sciris/sciris
https://doi.org/10.5281/zenodo.8245253
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/tacaswell
https://github.com/aflaxman
https://creativecommons.org/licenses/by/4.0/
http://sciris.org
https://doi.org/10.21105/joss.05076
https://doi.org/10.21105/joss.05076

and/or inherited Swiss-Army-knife toolboxes (whose original developer may or may not be
around to pass on undocumented wisdom). Several scientific communities have adopted
collaborative, community-driven, open-source software approaches due to the significant
savings in development costs and increases in code quality that they afford, such as astropy
(Robitaille et al., 2013), fmriprep (Esteban et al., 2019), and nextstrain (Hadfield et al.,
2018). Despite this progress, a large fraction of scientific software development efforts remain
a solo adventure (Kerr, 2019). This leads to proliferation of tools where resources are largely
spent reinventing wheels of variable quality, which jeopardizes the code’s minimum requirements
of being “re-runnable, repeatable, reproducible, reusable, and replicable” (Benureau & Rougier,
2018).

In addition, low-level programming abstractions can make it harder to clarify the science. For
instance, one of the reasons PyTorch has become popular in academic and research environments
is its success in making models easier to write compared to TensorFlow (Lorica, 2017). The
need for libraries that provide “simplifying interfaces” for research applications is reflected
in the development of multiple libraries in scientific Python ecosystems that have enabled
researchers to focus their time and efforts on solving problems, prototyping solutions, deploying
applications, and educating their communities. In addition to PyTorch (simplifying/extending
Tensorflow), other examples include seaborn (simplifying/extending Matplotlib) (Waskom,
2021), pingouin (simplifying/extending pandas), and PyVista (simplifying/extending VTK)
(Sullivan & Kaszynski, 2019), among many others. Sciris adds to this ecosystem as a “library
of the gaps”, addressing annoyances that are too small-scale to each need a dedicated library
of their own, but common enough that together they add up to significant coding burden.

Sciris in practice
The name Sciris is a portmanteau of “scientific” and “iris” (a reference to seeing clearly, as
well as the Greek word for “rainbow”). We began work on it in 2014, initially to support
development of Optima HIV (Kerr et al., 2015, 2020). We repeatedly encountered the same
inconveniences while building scientific webapps, and so we began collecting the tools we used
to overcome them into a shared library. While Python is considered an easy-to-use language
for beginners, the motivation that shaped Sciris’ evolution was to further lower the barriers to
accessing the numerous supporting libraries we were using.

Our investments in Sciris paid off when in early 2020 its combination of brevity and simplicity
proved crucial in enabling the rapid development of the Covasim model of COVID-19 transmis-
sion (Kerr et al., 2021). Covasim’s relative simplicity and readability, based in large part on its
heavy use of Sciris, enabled it to become one of the most widely adopted models of COVID-19,
used by students, researchers, and policymakers in over 30 countries (Kerr et al., 2022).

In addition to Optima HIV and Covasim, Sciris is currently used by many other scientific
software tools, such as Optima Nutrition (Pearson et al., 2018), the Cascade Analysis Tool
(Kedziora et al., 2019), Atomica (The Atomica Team, 2020), Optima TB (Goscé et al., 2021),
the Health Interventions Prioritization Tool (Fraser-Hurt et al., 2021), SynthPops (Mistry et
al., in preparation), and FPsim (O’Brien et al., 2022).

We believe using Sciris can lead to more efficient scientific code production for solo developers
and teams alike, including increased longevity of new scientific libraries (Perkel, 2020). Some
of the key functional aspects that Sciris provides are: (i) brevity through simple interfaces;
(ii) “dejargonification”; (iii) fine-grained exception handling; and (iv) version management.
We expand on each of these below, but first provide a vignette that illustrates many of Sciris’
features.

Kerr et al. (2023). Sciris: Simplifying scientific software in Python. Journal of Open Source Software, 8(88), 5076. https://doi.org/10.21105/joss.
05076.

2

https://www.astropy.org/
https://fmriprep.org
https://nextstrain.org
https://github.com/sciris/sciris
https://github.com/optimamodel/optima
https://covasim.org
https://github.com/optimamodel/nutrition
https://cascade.tools
https://atomica.tools
http://hiptool.org
https://synthpops.org
https://fpsim.org
https://doi.org/10.21105/joss.05076
https://doi.org/10.21105/joss.05076

Vignette
Compared with a domain-specific language like MATLAB, even relatively simple scientific code
in Python can require significant boilerplate. This extra code can obscure the key logic of the
scientific question being addressed.

For example, imagine that we wish to sample random numbers from a user-defined function
with varying noise levels, save the intermediate calculations, and plot the results. In vanilla
Python, each of these operations is somewhat cumbersome. Figure 1 presents two functionally
identical scripts; the one written with Sciris is considerably more readable and succinct.

This vignette illustrates many of Sciris’ most-used features, including timing, parallelization,
feature-rich containers, file saving and loading, and plotting. For the lines of the script that
differ, Sciris reduces the number of lines of code required from 33 to 7, a 79% decrease.

Figure 1: Comparison of functionally identical scripts without Sciris (left) and with Sciris (right), showing
a nearly five-fold reduction in lines of code required (excluding whitespace, comments, and the shared
“wave generator” code), from 33 lines to 7. The resulting plots are shown in Figure 2.

Kerr et al. (2023). Sciris: Simplifying scientific software in Python. Journal of Open Source Software, 8(88), 5076. https://doi.org/10.21105/joss.
05076.

3

https://doi.org/10.21105/joss.05076
https://doi.org/10.21105/joss.05076

Figure 2: Output of the scripts shown in Figure 1, without Sciris (left) and with Sciris (right). The two
plots are identical except for the new high-contrast colormap available in Sciris.

Design philosophy
The aim of Sciris is to make common tasks simpler. Sciris includes implementations of heavily
used code patterns and abstractions that facilitate the development and deployment of complex
domain-specific scientific applications, and helps non-specialist audiences interact with these
applications. We note that Sciris “stands on the shoulders of giants”, and as such is not
intended as a replacement of these libraries, but rather as an interface that facilitates a more
effective and sustainable development process through the following principles:

Brevity through simple interfaces. Sciris packages common patterns requiring multiple lines
of code into single, simple functions. With these functions one can succinctly express and
execute frequent plotting tasks (e.g., sc.commaticks, sc.dateformatter, sc.plot3d); ensure
consistent types, including containers (e.g., sc.toarray, sc.mergedicts, sc.mergelists),
or even perform line-by-line performance profiling (sc.profile). Brevity is also achieved
by extending functionality of well established objects (e.g., OrderedDict via sc.odict) and
methods (e.g., isinstance via sc.checktype that enables the comparison of objects against
higher-level types like arraylike), as well as wrapping useful third-party libraries (e.g., pyyaml
via sc.loadyaml). In providing a curated collection of common data science tools, Sciris has
similarities to R’s tidyverse.

Dejargonification. Sciris aims to use plain function names (e.g., sc.smooth, sc.findnearest,
sc.safedivide) so that the resulting code is as scientifically clear and human-readable as
possible. Sciris also provides some MATLAB-like functionality, and uses the same names
(e.g., sc.tic and sc.toc; sc.boxoff) to minimize the learning curve for scientists who have
MATLAB experience.

Fine-grained exception handling. Across many classes and functions, Sciris uses the keyword
die, enabling users to set a locally scoped level of strictness in the handling of exceptions.
If die=False, Sciris is more forgiving and softly handles exceptions by using its default
(opinionated) behavior, such as printing a warning and returning None so users can decide
how to proceed. If die=True, it directly raises the corresponding exception and message. This
flexibility reduces the need for try-catch blocks, which can distract from the code’s scientific
logic.

Version management. Keeping track of dates, authors, and code versions, plus additional notes
or comments, is an essential part of scientific projects. Sciris provides methods to easily save
and load metadata to/from figure files, including Git information (sc.savefig, sc.gitinfo,

Kerr et al. (2023). Sciris: Simplifying scientific software in Python. Journal of Open Source Software, 8(88), 5076. https://doi.org/10.21105/joss.
05076.

4

https://www.tidyverse.org/
https://www.mathworks.com/products/matlab.html
https://doi.org/10.21105/joss.05076
https://doi.org/10.21105/joss.05076

sc.loadmetadata), as well as shortcuts for comparing module versions (sc.compareversions)
or requiring them (sc.require).

Examples of key features
Here we illustrate a smattering of key features in greater detail; further information on
installation and usage can be found at docs.sciris.org. Figure 3 illustrates the functional
modules of Sciris. Sciris is available on pip (pip install sciris).

Figure 3: Block diagram of Sciris’ functionality, grouped by high-level concepts and types of tasks that
are commonly performed in scientific code.

Feature-rich containers
One of the key features in Sciris is sc.odict, a flexible container representing an associative
array with the best-of-all-worlds features of lists, dictionaries, and numeric arrays. This is
based on OrderedDict from collections, but supports list methods like integer indexing, key
slicing, and item insertion:

data = sc.odict(a=[1,2,3], b=[4,5,6])

assert data['a'] == data[0]

assert data[:].sum() == 21

for i, key, value in data.enumitems():

print(f'Item {i} is named "{key}" and has value {value}')

Output:

Item 0 is named "a" and has value [1, 2, 3]

Item 1 is named "b" and has value [4, 5, 6]

Kerr et al. (2023). Sciris: Simplifying scientific software in Python. Journal of Open Source Software, 8(88), 5076. https://doi.org/10.21105/joss.
05076.

5

https://docs.sciris.org
https://docs.python.org/3/library/collections.html
https://doi.org/10.21105/joss.05076
https://doi.org/10.21105/joss.05076

Numerical utilities
Indexing arrays is a common task in NumPy, but can be difficult due to incompatibilities of
object type. sc.findinds will find matches even if two things are not exactly equal due to
differences in type (e.g., floats vs. integers, lists vs. arrays). The code shown below produces
the same result as calling np.nonzero(np.isclose(arr, val))[0].

sc.findinds([2,3,6,3], 3.0)

Output:

array([1,3])

Parallelization
A frequent hurdle scientists face is parallelization. Sciris provides sc.parallelize, which acts
as a shortcut for using multiprocess.Pool(). By default it adjusts the pool size based on the
CPUs available, but can also use either a fixed number of CPUs or allocate them dynamically
based on load (sc.loadbalancer). This example shows three equivalent ways to iterate over
multiple complex arguments:

def f(x, y):

return x*y

out1 = sc.parallelize(func=f, iterarg=[(1,2),(2,3),(3,4)])

out2 = sc.parallelize(func=f, iterkwargs={'x':[1,2,3], 'y':[2,3,4]})

out3 = sc.parallelize(func=f, iterkwargs=[{'x':1, 'y':2},

{'x':2, 'y':3},

{'x':3, 'y':4}])

Plotting
Numerous shortcuts for customizing and prettifying plots are available in Sciris. Several
commonly used features are illustrated below, with the results shown in Figure 4:

sc.options(font='Garamond') # Set custom font

x = sc.daterange('2022-06-01', '2022-12-31', as_date=True) # Create dates

y = sc.smooth(np.random.randn(len(x))**2)*1000 # Create smoothed random numbers

c = sc.vectocolor(y, cmap='turbo') # Set colors proportional to y values

plt.scatter(x, y, c=c) # Plot the data

sc.dateformatter() # Automatic x-axis date formatter

sc.commaticks() # Add commas to y-axis tick labels

sc.setylim() # Automatically set the y-axis limits

sc.boxoff() # Remove the top and right axis spines

Kerr et al. (2023). Sciris: Simplifying scientific software in Python. Journal of Open Source Software, 8(88), 5076. https://doi.org/10.21105/joss.
05076.

6

https://doi.org/10.21105/joss.05076
https://doi.org/10.21105/joss.05076

Figure 4: Example of plot customizations via Sciris, including x- and y-axis tick labels and the font.

ScirisWeb
While a full description of ScirisWeb is beyond the scope of this paper, briefly, it builds on
Sciris to enable the rapid development of Python-based webapps, including those powering
Covasim and Optima Nutrition. By default, ScirisWeb uses Vuejs and sciris-js for the frontend,
Flask as the web framework, Redis for the (optional) database, and Matplotlib/mpld3 for
plotting. However, ScirisWeb is completely modular, which means that it could also be used to
(for example) link a React frontend to a MySQL database with Plotly figures. This modularity
is in contrast to full-stack solutions such as Shiny for Python, Plotly Dash, Streamlit, and
Voilà. While these libraries are even easier to use than ScirisWeb (since they do not require any
knowledge of JavaScript), they provide limited options for customization or switching between
technology stacks. In contrast, ScirisWeb provides the flexibility of a custom-written webapp
within the context of an “it just works” framework.

Beyond Sciris
Like seaborn, Sciris aims to “facilitate rapid exploration and prototyping through named
functions and opinionated defaults” (Waskom, 2021). Eventually, a time may come when
the user’s opinions diverge from Sciris’ defaults. Since most Sciris functions are standalone,
individual functions can be replaced on as as-needed basis. For example, in situations where
strictness is an asset (e.g., low-level libraries where an unexpected type is indicative of an
error), the added flexibility that Sciris provides (e.g., the type-agnostic sc.toarray) can be a
liability. As another example, sc.odict adds small but nonzero overhead to the dict built-in.
While in most cases this performance difference is negligible (<500 ms per million set/get
operations), for innermost loops of compute-intensive applications, dict should be used instead.
Finally, since Sciris aims for breadth rather than depth, Sciris functions may eventually need
to be supplanted by more powerful alternatives. For example, while sc.parallelize provides
one-line parallelization on a local machine or single virtual machine, parallelizing across multiple
machines requires more powerful libraries such as Dask (Rocklin, 2015), Ray, or Celery.

Kerr et al. (2023). Sciris: Simplifying scientific software in Python. Journal of Open Source Software, 8(88), 5076. https://doi.org/10.21105/joss.
05076.

7

http://github.com/sciris/scirisweb
https://app.covasim.org
https://nutrition.optimamodel.com
https://vuejs.org
https://github.com/sciris/sciris-js
https://flask.palletsprojects.com
https://redis.io
https://github.com/mpld3/mpld3
https://reactjs.org/
https://www.mysql.com/
https://plotly.com/
https://shiny.rstudio.com/py/
https://github.com/plotly/dash
https://streamlit.io
https://voila.readthedocs.io
https://www.dask.org/
https://www.ray.io/
https://docs.celeryq.dev/
https://doi.org/10.21105/joss.05076
https://doi.org/10.21105/joss.05076

Acknowledgements
The Sciris Development Team (info@sciris.org) wishes to thank David J. Kedziora, Dominic
Delport, Kevin M. Jablonka, Meikang Wu, and Dina Mistry for providing helpful feedback on
the Sciris library. David P. Wilson, William B. Lytton, and Daniel J. Klein provided in-kind
support of Sciris development. Financial and personnel support has been provided by the
United States Defense Advanced Research Projects Agency (DARPA) Contract N66001-10-C-
2008 (2010–2014), World Bank Assignment 1045478 (2011–2015), the Australian National
Health and Medical Research Council (NHMRC) Project Grant APP1086540 (2015–2017),
the Australian Research Council (ARC) Discovery Early Career Research Award (DECRA)
Fellowship Grant DE140101375 (2014–2019), Intellectual Ventures (2019–2021), and the Bill
& Melinda Gates Foundation (2021–present).

References
Benureau, F. C., & Rougier, N. P. (2018). Re-run, repeat, reproduce, reuse, replicate:

Transforming code into scientific contributions. Frontiers in Neuroinformatics, 11, 69.
https://doi.org/10.3389/fninf.2017.00069

Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe, A.,
Kent, J. D., Goncalves, M., DuPre, E., Snyder, M., & others. (2019). fMRIPrep:
A robust preprocessing pipeline for functional MRI. Nature Methods, 16(1), 111–116.
https://doi.org/10.1038/s41592-018-0235-4

Fraser-Hurt, N., Hou, X., Wilkinson, T., Duran, D., Abou Jaoude, G. J., Skordis, J., Chukwuma,
A., Lao Pena, C., Tshivuila Matala, O. O., Gorgens, M., & others. (2021). Using allocative
efficiency analysis to inform health benefits package design for progressing towards universal
health coverage: Proof-of-concept studies in countries seeking decision support. PLOS
One, 16(11), e0260247. https://doi.org/10.1371/journal.pone.0260247

Goscé, L., Abou Jaoude, G. J., Kedziora, D. J., Benedikt, C., Hussain, A., Jarvis, S., Skrahina,
A., Klimuk, D., Hurevich, H., Zhao, F., & others. (2021). Optima TB: A tool to help
optimally allocate tuberculosis spending. PLOS Computational Biology, 17 (9), e1009255.
https://doi.org/10.1371/journal.pcbi.1009255

Hadfield, J., Megill, C., Bell, S. M., Huddleston, J., Potter, B., Callender, C., Sagulenko, P.,
Bedford, T., & Neher, R. A. (2018). Nextstrain: Real-time tracking of pathogen evolution.
Bioinformatics, 34(23), 4121–4123. https://doi.org/10.1093/bioinformatics/bty407

Kedziora, D. J., Abeysuriya, R., Kerr, C. C., Chadderdon, G. L., Harbuz, V.-Ș., Metzger, S.,
Wilson, D. P., & Stuart, R. M. (2019). The Cascade Analysis Tool: Software to analyze and
optimize care cascades. Gates Open Research, 3. https://doi.org/10.12688/gatesopenres.
13031.2

Kerr, C. C. (2019). Is epidemiology ready for big software? Pathogens and Disease, 77(1),
ftz006. https://doi.org/10.1093/femspd/ftz006

Kerr, C. C., Stuart, R. M., Gray, R. T., Shattock, A. J., Fraser-Hurt, N., Benedikt, C., Haacker,
M., Berdnikov, M., Mahmood, A. M., Jaber, S. A., & others. (2015). Optima: A model
for HIV epidemic analysis, program prioritization, and resource optimization. Journal of
Acquired Immune Deficiency Syndromes, 69(3), 365–376.

Kerr, C. C., Stuart, R. M., Kedziora, D. J., Brown, A., Abeysuriya, R., Chadderdon, G. L.,
Nachesa, A., & Wilson, D. P. (2020). Optima HIV methodology and approach. In F. Zhao,
C. Benedikt, & D. Wilson (Eds.), Tackling the world’s fastest-growing HIV epidemic (p.
291). The World Bank. https://doi.org/10.1596/978-1-4648-1523-2_ch13

Kerr et al. (2023). Sciris: Simplifying scientific software in Python. Journal of Open Source Software, 8(88), 5076. https://doi.org/10.21105/joss.
05076.

8

https://doi.org/10.3389/fninf.2017.00069
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1371/journal.pone.0260247
https://doi.org/10.1371/journal.pcbi.1009255
https://doi.org/10.1093/bioinformatics/bty407
https://doi.org/10.12688/gatesopenres.13031.2
https://doi.org/10.12688/gatesopenres.13031.2
https://doi.org/10.1093/femspd/ftz006
https://doi.org/10.1596/978-1-4648-1523-2_ch13
https://doi.org/10.21105/joss.05076
https://doi.org/10.21105/joss.05076

Kerr, C. C., Stuart, R. M., Mistry, D., Abeysuriya, R. G., Cohen, J. A., George, L., Jastrzebski,
M., Famulare, M., Wenger, E., & Klein, D. J. (2022). Python vs. the pandemic: A case
study in high-stakes software development. Proceedings of the 21st Python in Science
Conference (SciPy 2022). https://doi.org/10.25080/majora-212e5952-00e

Kerr, C. C., Stuart, R. M., Mistry, D., Abeysuriya, R. G., Rosenfeld, K., Hart, G. R., Núñez, R.
C., Cohen, J. A., Selvaraj, P., Hagedorn, B., & others. (2021). Covasim: An agent-based
model of COVID-19 dynamics and interventions. PLOS Computational Biology, 17(7),
e1009149. https://doi.org/10.1371/journal.pcbi.1009149

Lorica, B. (2017). Why AI and machine learning researchers are beginning to embrace Py-
Torch. oreilly.com/radar/podcast/why-ai-and-machine-learning-researchers-are-beginning-
to-embrace-pytorch

Mistry, D., Kerr, C. C., Abeysuriya, R. G., Wu, M., Fisher, M., Thompson, A., Skrip, L.,
Cohen, J. A., & Klein, D. J. (in preparation). SynthPops: A generative model of human
contact networks.

Nature Editorial Board. (2018). Easing the burden of code review. Nature Methods, 15(9),
641. https://doi.org/10.1038/s41592-018-0137-5

O’Brien, M. L., Valente, A., Chabot-Couture, G., Proctor, J., Klein, D., Kerr, C., & Zimmer-
mann, M. (2022). FPSim: An agent-based model of family planning for informed policy
decision-making. PAA 2022 Annual Meeting.

Pearson, R., Killedar, M., Petravic, J., Kakietek, J. J., Scott, N., Grantham, K. L., Stuart,
R. M., Kedziora, D. J., Kerr, C. C., Skordis-Worrall, J., & others. (2018). Optima
nutrition: An allocative efficiency tool to reduce childhood stunting by better targeting
of nutrition-related interventions. BMC Public Health, 18(1), 1–12. https://doi.org/10.
1186/s12889-018-5294-z

Perkel, J. M. (2020). Challenge to scientists: Does your ten-year-old code still run? Nature,
584(7822), 656–659. https://doi.org/10.1038/d41586-020-02462-7

Robitaille, T. P., Tollerud, E. J., Greenfield, P., Droettboom, M., Bray, E., Aldcroft, T., Davis,
M., Ginsburg, A., Price-Whelan, A. M., Kerzendorf, W. E., & others. (2013). Astropy: A
community Python package for astronomy. Astronomy & Astrophysics, 558, A33.

Rocklin, M. (2015). Dask: Parallel computation with blocked algorithms and task scheduling.
In K. Huff & J. Bergstra (Eds.), Proceedings of the 14th Python in science conference
(SciPy 2015) (pp. 130–136). https://doi.org/10.25080/Majora-7b98e3ed-013

Sullivan, C., & Kaszynski, A. (2019). PyVista: 3D plotting and mesh analysis through a
streamlined interface for the visualization toolkit (VTK). Journal of Open Source Software,
4(37), 1450. https://doi.org/10.21105/joss.01450

The Atomica Team. (2020). Atomica: A simulation engine for compartmental models. In
GitHub repository. GitHub. https://github.com/atomicateam/atomica

Waskom, M. L. (2021). Seaborn: Statistical data visualization. Journal of Open Source
Software, 6(60), 3021. https://doi.org/10.21105/joss.03021

Kerr et al. (2023). Sciris: Simplifying scientific software in Python. Journal of Open Source Software, 8(88), 5076. https://doi.org/10.21105/joss.
05076.

9

https://doi.org/10.25080/majora-212e5952-00e
https://doi.org/10.1371/journal.pcbi.1009149
https://oreilly.com/radar/podcast/why-ai-and-machine-learning-researchers-are-beginning-to-embrace-pytorch
https://oreilly.com/radar/podcast/why-ai-and-machine-learning-researchers-are-beginning-to-embrace-pytorch
https://doi.org/10.1038/s41592-018-0137-5
https://doi.org/10.1186/s12889-018-5294-z
https://doi.org/10.1186/s12889-018-5294-z
https://doi.org/10.1038/d41586-020-02462-7
https://doi.org/10.25080/Majora-7b98e3ed-013
https://doi.org/10.21105/joss.01450
https://github.com/atomicateam/atomica
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.05076
https://doi.org/10.21105/joss.05076

	Summary
	Statement of need
	The landscape of scientific software
	Sciris in practice

	Vignette
	Design philosophy
	Examples of key features
	Feature-rich containers
	Numerical utilities
	Parallelization
	Plotting

	ScirisWeb
	Beyond Sciris
	Acknowledgements
	References

