
Biosiglive: an Open-Source Python Package for
Real-time Biosignal Processing
Amedeo Ceglia 1, Felipe Verdugo 2, and Mickael Begon 1

1 Institute of Biomedical Engineering, Faculty of Medicine, University of Montreal, Canada 2 Faculty of
Music, University of Montreal, Canada

DOI: 10.21105/joss.05091

Software
• Review
• Repository
• Archive

Editor: Kevin M. Moerman
Reviewers:

• @finsberg
• @marcoghislieri

Submitted: 02 December 2022
Published: 07 March 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
biosiglive aims to provide a simple and efficient way to access and process biomechanical data
in real time. It was conceived as user-friendly software aimed for both non-expert and expert
programmers. The library uses interfaces to access data from several sources, such as motion
capture software or any Python software development kit (SDK). Some interfaces are already
implemented for Vicon Nexus motion capture (Oxford, UK) and Delsys electromyography SDK
(EMG) (Boston, USA). That say, any additional interface can be added as custom interface
using the abstract class. biosiglive was designed for biosignals, therefore, existing classes
represent data collected from standard acquisition systems in biomechanics, such as markers
for motion capture or EMG. Methods are available to process in real-time any input signal.
Data can be saved in a binary file at each time frame to avoid any data loss in case of system
shutdown. Data can also be displayed using the LivePlot class, which is based on PyQtGraph
(C++ core) and allows, therefore, fast real-time displaying. Finally, ‘biosiglive’ was conceived
as a flexible real-time data processing and streaming tool adaptable to various set-ups, software,
and systems. Therefore, a TCP/IP connection module was implemented to send data to a
distant port to be used by any other system.

Statement of Need
Biosignals such as electromyography (EMG) or marker kinematic data are often used to
assess human movement in clinical, sports, or artistic contexts. However, the analysis is
often time-consuming and requires a good knowledge of programming languages such as
MATLAB (Mathworks LCC, Natick, USA) or Python. In the last decade, some open-source
tools have emerged to facilitate the analysis of these signals, like biomechanical toolkit

(Barre & Armand, 2014), biomechzoo (Dixon et al., 2017), pyomeca (Martinez et al., 2020),
or Kinetics toolkit (Chénier, 2021). Since biomechzoo relies on MATLAB, a closed-source
software , not every biomechanist can benefit from this tool. The Python environment is,
on the other hand, entirely free and allows anyone to use the package without any cost.
pyomeca and Kinetics toolkit both provide efficient methods to analyze biosignals, but are
designed to work offline. However, real-time use of these signals is often required to provide
task feedback to the user (Giggins et al., 2013) or to control a device (Cozean et al., 1988).
In this type of use, access to biosignals easily and in real-time is a crucial point. To our
knowledge, no tool dedicated to biomechanical data is available to provide real-time access
and processing of these signals. Also, there is numerous platforms where data can come from.
So, a package able to stream data from any of these sources should help the use of biosignals
on a larger scale (in clinical, rehabilitation, pedagogical, sport, and artistic activities). We
have developed biosiglive to facilitate the use of biosignals in real-time. It was achieved
by pre-implementing standard data processing and data retrieving from several sources such
as Nexus software for motion capture and analogical signals. Pre-implemented processing

Ceglia et al. (2023). Biosiglive: an Open-Source Python Package for Real-time Biosignal Processing. Journal of Open Source Software, 8(83),
5091. https://doi.org/10.21105/joss.05091.

1

https://orcid.org/0000-0002-7854-9410
https://orcid.org/0000-0003-2486-3444
https://orcid.org/0000-0002-4107-9160
https://doi.org/10.21105/joss.05091
https://github.com/openjournals/joss-reviews/issues/5091
https://github.com/pyomeca/biosiglive
https://doi.org/10.5281/zenodo.7703146
https://kevinmoerman.org
https://orcid.org/0000-0003-3768-4269
https://github.com/finsberg
https://github.com/marcoghislieri
https://creativecommons.org/licenses/by/4.0/
https://github.com/pyqtgraph/pyqtgraph
https://doi.org/10.21105/joss.05091

methods are customizable (i.e. filters cutoff frequency or moving average window size), the
user can also develop his/her own method inside the program. Users can also add an interface
module to make ‘biosiglive’ work with the desired acquisition system. Examples are provided
to guide the user and documentation is available.

Features
biosiglive is divided into five independent modules. The main features are:

• Processing: real-time and offline data processing.
• Interfaces: interfaces of standard software such as Vicon Nexus (Oxford, UK) or Delsys

Trigno Community (Boston, USA).
• Visualization: real-time signal visualization,
• Streaming pipeline: pipeline to stream, process, disseminate and save data in real

time.
• File I/O: saving data in binary format at every time frame.

A Biomechanical example: Electromyographic pipeline
biosiglive provides examples for different biomechanical tasks such as getting and processing
EMG signals or any generic analog devices from Nexus, compute live cadence from a treadmill,
or applying a calibration matrix to raw signals. More advanced examples are available such as
computing and showing 3D joint kinematics from a marker set.

The following example shows how to stream, process, display, and save EMG signals from
Nexus software.

from biosiglive import LivePlot, save , ViconClient, RealTimeProcessingMethod, PlotType

Define the system from which you want to get the data.

interface = ViconClient(ip="localhost", system_rate=100)

n_electrodes = 4

raw_emg = None

muscle_names = [

"Pectoralis major",

"Deltoid anterior",

"Deltoid medial",

"Deltoid posterior"

]

Add device to Vicon interface

interface.add_device(

nb_channels=n_electrodes,

device_type="emg",

name="emg",

rate=2000,

method=RealTimeProcessingMethod.ProcessEmg,

moving_average_window=600

)

Add plots

emg_plot = LivePlot(

name="emg",

rate=100,

plot_type=PlotType.Curve,

nb_subplots=n_electrodes,

Ceglia et al. (2023). Biosiglive: an Open-Source Python Package for Real-time Biosignal Processing. Journal of Open Source Software, 8(83),
5091. https://doi.org/10.21105/joss.05091.

2

https://doi.org/10.21105/joss.05091

channel_names=muscle_names

)

emg_plot.init(plot_windows=500, y_labels="Processed EMG (mV)")

emg_raw_plot = LivePlot(

name="emg_raw",

rate=100,

plot_type=PlotType.Curve,

nb_subplots=n_electrodes,

channel_names=muscle_names

)

emg_raw_plot.init(plot_windows=10000, colors=(255, 0, 0), y_labels="EMG (mV)")

while True:

Get data from Vicon interface and process it.

raw_emg = interface.get_device_data(device_name="emg")

emg_proc = interface.devices[0].process()

Update plots.

emg_plot.update(emg_proc[:, -1:])

emg_raw_plot.update(raw_emg)

Add data to the binary file.

save({"raw_emg": raw_emg, "process_emg":emg_proc[:, -1]}, "emg.bio")

The live plot is shown in the following figure:

Live display of processed (left) ad raw (right) EMG signals for a 5-second window.

Research Projects Using biosiglive

(Verdugo et al., 2022)

Acknowledgements
This work was supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC) through the CREATE OPSIDIAN program, the NSERC discovery of M. Begon, and
the Pôle lavallois d’enseignement supérieur en arts numériques et économie créative , Appel à
projet 2020 - projet eMusicorps.

Ceglia et al. (2023). Biosiglive: an Open-Source Python Package for Real-time Biosignal Processing. Journal of Open Source Software, 8(83),
5091. https://doi.org/10.21105/joss.05091.

3

https://doi.org/10.21105/joss.05091

References
Barre, A., & Armand, S. (2014). Biomechanical ToolKit: Open-source framework to visualize

and process biomechanical data. Computer Methods and Programs in Biomedicine, 114(1),
80–87. https://doi.org/10.1016/j.cmpb.2014.01.012

Chénier, F. (2021). Kinetics toolkit: An open-source python package to facilitate research in
biomechanics. Journal of Open Source Software, 6(66), 3714. https://doi.org/10.21105/
joss.03714

Cozean, C., Pease, W. S., & Hubbell, S. (1988). Biofeedback and functional electric stimulation
in stroke rehabilitation. Archives of Physical Medicine and Rehabilitation, 69(6), 401–405.

Dixon, P. C., Loh, J. J., Michaud-Paquette, Y., & Pearsall, D. J. (2017). biomechZoo:
An open-source toolbox for the processing, analysis, and visualization of biomechanical
movement data. Computer Methods and Programs in Biomedicine, 140, 1–10. https:
//doi.org/10.1016/j.cmpb.2016.11.007

Giggins, O. M., Persson, U. M., & Caulfield, B. (2013). Biofeedback in rehabilitation.
Journal of Neuroengineering and Rehabilitation, 10(1), 1–11. https://doi.org/10.1186/
1743-0003-10-60

Martinez, R., Michaud, B., & Begon, M. (2020). Pyomeca: An open-source framework for
biomechanical analysis. Journal of Open Source Software, 5(53), 2431. https://doi.org/
10.21105/joss.02431

Verdugo, F., Ceglia, A., Frisson, C., Burton, A., Begon, M., Gibet, S., & Wanderley, M. M.
(2022). Feeling the Effort of Classical Musicians - A Pipeline from Electromyography to
Smartphone Vibration for Live Music Performance. NIME 2022. https://doi.org/10.21428/
92fbeb44.3ce22588

Ceglia et al. (2023). Biosiglive: an Open-Source Python Package for Real-time Biosignal Processing. Journal of Open Source Software, 8(83),
5091. https://doi.org/10.21105/joss.05091.

4

https://doi.org/10.1016/j.cmpb.2014.01.012
https://doi.org/10.21105/joss.03714
https://doi.org/10.21105/joss.03714
https://doi.org/10.1016/j.cmpb.2016.11.007
https://doi.org/10.1016/j.cmpb.2016.11.007
https://doi.org/10.1186/1743-0003-10-60
https://doi.org/10.1186/1743-0003-10-60
https://doi.org/10.21105/joss.02431
https://doi.org/10.21105/joss.02431
https://doi.org/10.21428/92fbeb44.3ce22588
https://doi.org/10.21428/92fbeb44.3ce22588
https://doi.org/10.21105/joss.05091

	Summary
	Statement of Need
	Features
	A Biomechanical example: Electromyographic pipeline

	Research Projects Using biosiglive
	Acknowledgements
	References

