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Often, data can be naturally described via multiple views or modalities. For example, we
could consider an image and the corresponding text as different modalities. These modalities
contain complementary information which can be modelled jointly using multi-view methods.
The joint modelling of multiple modalities has been explored in many research fields such as
medical imaging (Serra et al., 2019), chemistry (Sjöström et al., 1983), and natural language
processing (Sadr et al., 2020).

Autoencoders are unsupervised models which learn low dimensional latent representations
of complex data. The autoencoder framework consists of two mappings; the encoder which
embeds information from the input space into a latent space, and a decoder which transforms
point estimates from the latent space back into in the input space. Autoencoders have been
successful in downstream tasks such as classification (Creswell & Bharath, 2017), outlier
detection (An & Cho, 2015), and data generation (Wei & Mahmood, 2021).

There exist many software frameworks for extending autoencoders to multiple modalities.
Generally, this involves learning separate encoder and decoder functions for each modality with
the latent representations being combined or associated in some way. By far the most popular
group of multi-view autoencoder models are multi-view extensions of Variational Autoencoders
(VAEs) where the latent space is regularised by mapping the encoding distributions to a
gaussian prior using a Kullback–Leibler (KL) divergence term. However, there are also other
multi-view autoencoder frameworks, such as multi-view Adversarial Autoencoders (AAEs) (X.
Wang et al., 2019). Here the latent space is regularised by mapping the encoding distribution
to a prior (here a gaussian) using an auxiliary discriminator tasked with distinguishing samples
from the posterior and prior distributions. The choice of AAE or VAE model may be influenced
by various elements of the application process. For example, the encoding distribution which
best describes the data or stability during training may impact the choice of model.

Figure 1: Single view autoencoder frameworks; (a) vanilla autoencoder, (b) adversarial autoencoder, (c)
variational autoencoder.
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Even within these regularisation frameworks there are vast modelling differences to be considered
when choosing the best model for the task at hand. Figure 2 depicts two possible latent
variable models for modelling two views of data; 𝑋 and 𝑌. Figure 2a shows the joint latent
variable model (Suzuki & Matsuo, 2022) where both views, 𝑋 and 𝑌, share an underlying
factor. The latent variable model in Figure 2b shows a coordinated model, which assumes
some relationship between the latent variables, 𝑧𝑥 and 𝑧𝑦 of 𝑋 and 𝑌 respectively. Which
latent variable model is most appropriate depends on the desired outcome of the learning task.
Example multi-view autoencoder frameworks built for these two latent variable models are
given in Figure 3.

Figure 2: Latent variable models for two input views. Latent variable model where data 𝑋 and 𝑌 (a)
share an underlying latent factor 𝑧 (b) have associated latent factors 𝑧𝑥 and 𝑧𝑦.

Figure 3: Example frameworks of a two-view autoencoder for data 𝑋 and 𝑌 for a (a) joint model, where
the individual latent spaces are combined and the reconstruction is carried out from the joint latent
space, and a (b) coordinated model, where the latent representations are coordinated either by cross
view generation or an addition loss term for association between the latent variables.

Given the large number of multi-view autoencoders and versatility of architecture, it is important
to consider which model would best suit the use case. multi-view-AE is a Python library which
implements several variants of multi-view autoencoders in a simple, flexible, and easy-to-use
framework. We would like to highlight the following benefits of our package.

Firstly, the multi-view-AE package is implemented with a similar interface to scikit-learn

(Buitinck et al., 2013) with common and straight-forward functions implemented for all
models. This makes it simple for users to train and evaluate models without requiring detailed
knowledge of the methodology. Secondly, all models follow a modular structure. This gives
users the flexibility to choose the class (such as the encoder or decoder network) from the
available implementations, or to contribute their own. As such, the multi-view-AE package is
accessible to both beginners, with off-the-shelf models, and experts, who wish to adapt the
existing framework for further research purposes. Finally, the multi-view-AE package uses
the PyTorch-Lightning (Falcon & others, 2019) API which offers the same functionality as
raw PyTorch (Paszke et al., 2019) in a more structured and streamlined way. This offers users
more flexibility, faster training and optimisation time, and high scalability.
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Statement of need
Multi-view autoencoders have become a popular family of unsupervised learning methods
in the field of multi-view learning. The flexibility of the form of the encoder and decoder
functions, ease of extension to multiple views, generative properties, and adaptability to large
scale datasets has contributed to the popularity of multi-view autoencoders compared to other
multi-view methods. Subsequently, multi-view autoencoders have used to address challenges
across a range of fields; such as anomaly detection from videos (Deepak et al., 2021) or
cross-modal generation of multi-omics data (“A Mixture-of-Experts Deep Generative Model
for Integrated Analysis of Single-Cell Multiomics Data,” 2021).

There exist many different multi-view autoencoder frameworks with the best method of choice
depending on the specific task. Existing code is often implemented using different Deep
Learning frameworks or varied programming styles making it difficult for users to compare
methods. The motivation for developing the multi-view-AE library is to widen the accessibility
of these algorithms by allowing users to easily test methods on new datasets and enable
developers to compare methods and extend code for new research applications. The modular
structure of the multi-view-AE library allows developers to choose which element of the code
to extend and swap out existing Python classes for new implementations whilst leaving the
wider codebase untouched.

There exists, as far as we are aware, no Python library that collates a large number of
multi-view autoencoder models into one easy to use framework. The Pixyz library (Suzuki
et al., 2021) is probably the closest relative of multi-view-AE, implementing a number of
multi-view autoencoder methods. However, Pixyz is designed for the wider field of deep
generative modelling whereas multi-view-AE focuses specifically on multi-view autoencoder
models. As such multi-view-AE builds upon Pixyz’s multi-view offering providing a wider
range of multi-view methods.

Software description

Software architecture
Following the scikit-learn interface, to train a multi-view autoencoder model with the
multi-view-AE package, first a model object is initialised with relevant parameters in an easy-
to-configure file. Next, the model is trained with the fit() method using the specified data.
Following fitting, the saved model object can be used for further analysis: predicting the latent
variables, using predict_latent(), or data reconstructions, using predict_reconstruction().

All models are implemented in PyTorch using the PyTorch-Lightning wrapper.

Parameter settings
The multi-view-AE package uses the Hydra API for configuration management. Most
parameters are set in a configuration file and are loaded into the model object by Hydra.
The combination of Hydra with the modular structure of models in the multi-view-AE

package, makes it easy for the user to replace model elements with, either other available
implementations or their own by editing the relevant section of the configuration file.

Implemented models
A complete model list at the time of publication:

Aguila et al. (2023). Multi-view-AE: A Python package for multi-view autoencoder models. Journal of Open Source Software, 8(85), 5093.
https://doi.org/10.21105/joss.05093.

3

https://doi.org/10.21105/joss.05093


Model class Model name
Number of

views
mcVAE Multi-Channel Variational Autoencoder

(mcVAE) (Antelmi et al., 2019)
>=1

AE Multi-view Autoencoder >=1
AAE Multi-view Adversarial Autoencoder

with separate latent representations
>=1

DVCCA Deep Variational CCA (W. Wang et
al., 2016)

2

jointAAE Multi-view Adversarial Autoencoder
with joint latent representation

>=1

wAAE Multi-view Adversarial Autoencoder
with joint latent representation and

Wasserstein loss

>=1

mmVAE Variational mixture-of-experts
autoencoder (MMVAE) (Shi et al.,

2019)

>=1

mVAE Multimodal Variational Autoencoder
(MVAE) (Wu & Goodman, 2018)

>=1

me_mVAE Multimodal Variational Autoencoder
(MVAE) with separate ELBO terms for

each view (Wu & Goodman, 2018)

>=1

JMVAE Joint Multimodal Variational
Autoencoder(JMVAE-kl) (Suzuki et al.,

2016)

2

MVTCAE Multi-View Total Correlation
Auto-Encoder (MVTCAE) (Hwang et

al., 2021)

>=1

MoPoEVAE Mixture-of-Products-of-Experts VAE
(T. M. Sutter et al., 2021)

>=1

mmJSD Multimodal Jensen-Shannon
divergence model (mmJSD) (T. Sutter

et al., 2021)

>=1

Documentation
Documentation is available (https://multi-view-ae.readthedocs.io/en/latest/) for the multi-

view-AE package as well as tutorial notebooks. These resources serve as both guides to the
multi-view-AE package and educational material for multi-view autoencoder models.
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