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Numerical simulations of seismic cycles constitute a useful tool to test the implications of
various constitutive friction laws, materials properties, and boundary conditions. A unique
challenge of numerical models of fault dynamics is the resolution of a wide range of time and
length scales, going from milliseconds during seismic ruptures to years during seismic quiescence
with a rupture front spanning a few meters to fault slip distributed over multiple kilometers. A
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Reviewers: well-suited approach for this problem is the boundary integral method (Barbot, 2019b; Liu &
= @mherman09 Rice, 2007; Ozawa & Ando, 2021; Segall & Bradley, 2012; Wang & Barbot, 2023), as the
= Qwillic3 elastic medium is captured by appropriate Green's functions, and only the fault interface must
= Qthehalfspace be sampled numerically, resulting in orders of magnitude reduction in computational burden

(M. Li et al., 2022), while still allowing realistic fault geometry (D. Li & Liu, 2016, 2017;
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reduces the numerical complexity even further, allowing exploration of increasingly complex

License rheological models (Barbot et al., 2012; Gauriau et al., 2023; Miyake & Noda, 2019; Noda,

Authors of papers retain copyright  2022). However, the approach is often limited to a single fault (Romanet & Ozawa, 2022).

and release the work under a Here, we provide a suite of numerical modeling software to simulate seismic cycles on multiple

Creative Commons Attribution 4.0 papa|le| faults combining the efficiency of Fourier methods and the complexity of an interacting
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The models include semi-infinite faults in conditions of two-dimensional anti-plane or in-plane
strain, or along finite faults embedded in a three-dimensional full space. The fault dynamics is
governed by a constitutive law with a slip-rate, state, and temperature dependence (Barbot,
2019a, 2022, 2023). The method is based on the quasi-dynamic approximation whereby the
effect of seismic waves is approximated by radiation damping. The stress interactions are
computed analytically in the Fourier domain (Barbot, 2021) and converted with the FFTW3 fast
Fourier transform (Frigo & Johnson, 2005). The calculations for a two-dimensional domain
are parallelized with OpenMP. The spectrum of fault slip, including creep, slow-slip events,
slow and fast earthquakes (Figure 1), is afforded by adaptive time steps with the Runge-Kutta
method (Press et al., 1996). The simulations using finite faults are parallelized with MPI
(Gabriel et al., 2004). The stress kernels allow the mechanical interactions of an arbitrary
number of parallel faults, allowing structurally complex settings with a network of faults and
multiple step-overs.
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Figure 1: Example simulation of seismic cycles on two parallel faults. A) Model setup with the distribution
of frictional and physical properties leading to unstable slip in a 5 km-wide asperity (red) surrounded by
a velocity-strengthening region (blue). The thin surroundings of the fault surface (yellow) is subject to a
kinematic boundary condition to enforce a long-term slip-rate of about 30 mm/yr, equivalent to 1 nm/s.
The two faults are separated by 15 km. Each fault is sampled with 512x512 rectangle patches of 25 m.
B) Sequences of fast ruptures followed by afterslip and slow-slip events late in the inter-seismic period
corresponding to about 120,000 quasi-static time steps. The slices correspond to horizontal and vertical
cross-sections through each fault. The dashed lines indicate the boundaries of the velocity-weakening
region. C) Time series of peak velocity in the unstable asperities of faults 1 and 2. Velocities above 1
m/s are firmly in the seismic regime. Slow-slip events are more pronounced on fault 1. The simulation
corresponds to the input file 3d/examples/tutorials/run2f.sh.

Statement of need

Motorcycle is a series of Fortran90 standalone numerical modeling tools for fault dynamics.
The numerical simulations are optimized for performance and stability, based on automatic
time-stepping and meshing. The input file allows complex rheological or structural settings and
the automatic exploration of the parameter space. The simulation output is provided in ASCII
tables and netcdf files (Brown et al., 1993; Rew & Davis, 1990) for automatic visualization
with typical geophysical software such as the Generic Mapping Tools (Wessel et al., 2019).

Motorcycle is designed for scientists conducting research in fault dynamics. Applications
include the nucleation of frictional instabilities (e.g., slow-slip events), the propagation of
earthquake ruptures (e.g., crack-like versus pulse-like), and the mechanical coupling of multiple
faults. Successful simulation benchmarks based on comparison with other software can be
found in Jiang et al. (2022). Applications of the method include the simulation of synchronized
earthquakes on distant faults (Barbot, 2021), of complex slow-slip events generating tremors
(Nie & Barbot, 2021), and of mainshock/aftershock sequences (Nie & Barbot, 2022).
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