
ProgPy: Python Packages for Prognostics and Health
Management of Engineering Systems
Christopher Teubert 1, Katelyn Jarvis1, Matteo Corbetta 2, Chetan
Kulkarni2, and Matthew Daigle2

1 NASA Ames Research Center, United States 2 KBR, Inc.
DOI: 10.21105/joss.05099

Software
• Review
• Repository
• Archive

Editor: Kelly Rowland
Reviewers:

• @tbsexton
• @nkrusch

Submitted: 12 December 2022
Published: 06 July 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Prognostics of engineering systems or systems of systems is the prediction of future performance
and/or the time at which one or more events of interest occur. Prognostics can be applied in a
variety of applications, from spacecraft and aircraft to wind turbines, oil and gas infrastructure,
and assembly lines. Prognostic results are used to inform action to extend life or prevent
failures through changes in use or predictive maintenance.

The NASA Prognostics Python Packages (ProgPy) (Teubert et al., 2022) are a set of open-
sourced Python packages supporting research and development of prognostics and health
management for engineering systems, as described in (Goebel et al., 2017). ProgPy builds upon
the architecture of the Matlab Prognostics Libraries (Daigle, 2016c, 2016a, 2016b), Generic
Software Architecture for Prognostics (Teubert et al., 2017), and Prognostics As-A-Service
(Watkins et al., 2019). ProgPy implements architectures and common functionalities of
prognostics, supporting both researchers and practitioners.

Statement of need
Prognostics and Health Management (PHM) is a fast-growing field. Successful PHM application
can reduce operational costs and prevent failure, making systems safer. There has been limited
application of prognostics in practice. This is partially because prognostics is a multi-faceted
and complex problem, including data availability, sensor design and placement, and, of interest
to us, software.

Often, software is written for an ad-hoc single prognostic application and cannot be transferred
to others, or is limited in scope. A few related packages are described here. Simantha is a
discrete manufacturing system simulation package that simulates degradation, but it is limited
to a Discrete-Time Markov Chain and doesn’t include prognostic capabilities (Dadfarnia &
Drozdov, 2013). Lifelines is a survival analysis tool that can be used for reliability analysis to
establish fixed-interval maintenance schedules, a different problem than that solved by ProgPy
(Davidson-Pilon, 2022). Pomegranate is a Python probabilistic modeling package effective for
data science applications (Schreiber, 2017). However, Pomegranate does not include explicit
state estimation capabilities, prognostics tools, or physics-based degradation modeling features.
Finally, there are a number of general machine-learning packages such as TensorFlow, scikit
learn, and PyTorch. These are general tools that can be used for diagnostics and prognostics,
but are not designed specifically for that application.

There is a need for a foundational set of efficient tools to enable new PHM technologies.

ProgPy provides a set of support packages for individuals researching and developing prognostic
technologies. ProgPy consists of three packages: prog_models, prog_algs, and prog_server.

Teubert et al. (2023). ProgPy: Python Packages for Prognostics and Health Management of Engineering Systems. Journal of Open Source
Software, 8(87), 5099. https://doi.org/10.21105/joss.05099.

1

https://orcid.org/0000-0001-6788-4507
https://orcid.org/0000-0002-7169-1051
https://doi.org/10.21105/joss.05099
https://github.com/openjournals/joss-reviews/issues/5099
https://github.com/nasa/prog_models
https://doi.org/10.5281/zenodo.8097013
https://orcid.org/0000-0001-5147-0051
https://github.com/tbsexton
https://github.com/nkrusch
https://creativecommons.org/licenses/by/4.0/
https://nasa.github.io/progpy/
https://doi.org/10.21105/joss.05099

prog_models provides tools aiding the development, evaluation, simulation, and tuning of prog-
nostic models, whether physics-based or data-driven. prog_models also supports downloading
select relevant datasets (Bole et al., 2014; Saxena & Goebel, 2008). prog_algs supports
uncertainty representation, state estimation, prognostics, the evaluation and visualization of
prognostic results, and the creation of new prognostic algorithms. prog_server is a Service-
Oriented Architecture for prognostics and state estimation. prog_server is also distributed
with a Python client, prog_client.

The following sections describe some ways ProgPy could be used. There are many features and
use cases beyond those illustrated here. See the ProgPy documentation for more information.

Selected use case: building and simulating models
One of the primary use-cases of ProgPy is building new models. Prognostic models are created
by subclassing the PrognosticsModel class. Users can copy the model template as a starting
point, replacing the representative member functions with model logic.

Prognostic models have inputs (load/control applied to a system), internal states, outputs
(measurable quantities), and events of interest (what we’re predicting). Logic of a prognostic
model is defined using the state transition (dx or next_state), output, event_state, and
threshold_met functions.

In the below example, a user creates a physics-based model of a Lithium-ion battery. In this
model (see here), state transition equations (i.e., internal states) relate the voltage discharge
from the battery (i.e., the output) given an applied current (i.e., the input).

class Battery(PrognosticsModel):

inputs = [

‘i’ # current applied to battery

]

states = [

internal battery model states, e.g., temperature, surface potentials

nasa.github.io/progpy/api_ref/prog_models/IncludedModels.html

‘x_1’, # State 1

‘x_2’, # State 2

…

]

outputs = [

‘t’, # Battery temperature

‘v’ # Voltage supplied by battery

]

events = [

'EOD' # battery end-of-discharge

]

Default parameters. Overwritten by passing parameters into constructor

default_parameters = {

'x0':{ # Initial State

},

'param1':p_1,

….

Include parameters to define battery model

nasa.github.io/progpy/api_ref/prog_models/IncludedModels.html

}

def dx(self, x, u):

Teubert et al. (2023). ProgPy: Python Packages for Prognostics and Health Management of Engineering Systems. Journal of Open Source
Software, 8(87), 5099. https://doi.org/10.21105/joss.05099.

2

https://nasa.github.io/progpy/
https://github.com/nasa/prog_models/blob/ac7cf016996ac707a6588f41ac54ff747816552a/src/prog_models/models/battery_electrochem.py#L161
https://doi.org/10.21105/joss.05099

calculate derivative of the battery state

return self.StateContainer({}) # Return state container with derivative

def output(self, x):

From the state, calculate temperature and voltage

return self.OutputContainer({'t': x['t'], 'v': x['v']})

def event_state(self, x):

From current state, calculate progress towards EOD

return {

'EOD': v_now – v_threshold

EOD occurs when voltage drops below threshold

}

The resulting model can then be used in simulation:

m = Battery()

def future_load(t, x=None): # system loading

return m.InputContainer({‘i’:1}) # Constant 1 amp applied

simulated_results = m.simulate_to_threshold(future_load, dt=0.005)

print(f'EOD was reached in {round(simulated_results.times[-1],2)}seconds')

ProgPy also includes data-driven models such as the LSTM State Transition and Dynamic
Mode Decomposition models. These are trained using data and then used for simulation or
prognostics, as above.

Selected use case: prognostics of battery discharge cycle
Models can be used for prognostics with prog_algs. Prognostics is often split into two steps:
state estimation and prediction. In state estimation, the system state is estimated, with
uncertainty, using the prior state estimate and sensor data. In prediction, the state estimate is
predicted forward.

This example illustrates predicting the battery discharge. Here data is retrieved from some
unspecified source (data_source). This can be a data stream, playback file, or any other
source. This is similar to the sim_battery_eol example (see here).

batt = Battery()

x0 = batt.initialize()

Create Particle Filter State Estimator

state_estimator = state_estimators.ParticleFilter(batt, x0)

Create Monte Carlo Predictor

predictor = predictors.MonteCarlo(batt)

Future loading as function of time (t) and state (x)

In this case- constant load

def future_loading(t, x=None):

return batt.InputContainer({'i':2.35})

while RUNNING:

u, z = data_source.get_data()

Estimate state using loading (u) and output measurements (z)

state_estimator.estimate(t, u, z)

eod = batt.event_state(filt.x.mean)['EOD']

print(f" - State of charge (mean): {eod}")

Teubert et al. (2023). ProgPy: Python Packages for Prognostics and Health Management of Engineering Systems. Journal of Open Source
Software, 8(87), 5099. https://doi.org/10.21105/joss.05099.

3

https://github.com/nasa/prog_models/blob/master/examples/
https://doi.org/10.21105/joss.05099

Only predict every PREDICTION_UPDATE_FREQ steps

if (step%PREDICTION_UPDATE_FREQ==0):

mc_results = mc.predict(filt.x, future_loading, t0 = t, dt=TIME_STEP)

metrics = mc_results.time_of_event.metrics()

eod_mean = metrics['EOD']['mean']

eod_std = metrics['EOD']['std']))

print(f' - Predicted end of discharge: {eod_mean} (sigma: {eod_std})')

NASA use cases
ProgPy has been used in various NASA projects. Two are described below.

Data and Reasoning Fabric
ProgPy functionality predicting battery degradation was implemented to assess the Li-ion
batteries state of charge during unmanned aerial vehicle (UAV) flight. Based on planned
trajectories, ProgPy provided UAV operators with statistics on expected battery health during
flight and helped to ensure safety in the national airspace (Jarvis et al., 2022).

Autonomous Spacecraft Operations
ProgPy was used to create models predicting the ISS life support system degradation informing
maintenance. Researchers evaluated the performance of multiple potential models with data
from the system and ProgPy metrics and visualization. Researchers updated models based on
performance results. The selected model will be integrated with ProgPy state estimation and
prediction into a prognostic application for crew or ground support.

Acknowledgements
ProgPy is supported by NASA’s Autonomous Spacecraft Operations, Data and Reasoning
Fabric, System-Wide Safety, and Transformative Tools and Technologies projects. Additionally,
development is supported by Northrop Grumman Corporation, Vanderbilt University, the
German Aerospace Center (DLR), Research Institutes of Sweden and others.

References
Bole, B., Kulkarni, C., & Daigle, M. (2014). Randomized battery usage data set. In

NASA Ames Research Center, Moffett Field, CA. NASA Prognostics Data Repository.
https://www.nasa.gov/content/prognostics-center-of-excellence-data-set-repository

Dadfarnia, M., & Drozdov, S. (2013). Simantha. In NIST. National Institute of Standards;
Technology [Software]. https://github.com/usnistgov/simantha

Daigle, M. (2016a). Prognostics algorithm matlab library. https://github.com/nasa/
PrognosticsAlgorithmLibrary

Daigle, M. (2016b). Prognostics metrics matlab library. https://github.com/nasa/
PrognosticsMetricsLibrary

Daigle, M. (2016c). Prognostics models matlab library. https://github.com/nasa/
PrognosticsModelLibrary

Davidson-Pilon, C. (2022). Lifelines, survival analysis in python (Version v0.27.4). Zenodo.
https://doi.org/10.5281/zenodo.7329096

Teubert et al. (2023). ProgPy: Python Packages for Prognostics and Health Management of Engineering Systems. Journal of Open Source
Software, 8(87), 5099. https://doi.org/10.21105/joss.05099.

4

https://www.nasa.gov/content/prognostics-center-of-excellence-data-set-repository
https://github.com/usnistgov/simantha
https://github.com/nasa/PrognosticsAlgorithmLibrary
https://github.com/nasa/PrognosticsAlgorithmLibrary
https://github.com/nasa/PrognosticsMetricsLibrary
https://github.com/nasa/PrognosticsMetricsLibrary
https://github.com/nasa/PrognosticsModelLibrary
https://github.com/nasa/PrognosticsModelLibrary
https://doi.org/10.5281/zenodo.7329096
https://doi.org/10.21105/joss.05099

Goebel, K., Daigle, M. J., Saxena, A., Roychoudhury, I., Sankararaman, S., & Celaya, J.
(2017). Prognostics: The science of making predictions. Createspace Independent Pub.

Jarvis, K., Corbetta, M., Teubert, C., & Schuet, S. (2022). Enabling in-time prognostics
with surrogate modeling through physics-enhanced dynamic mode decomposition method.
Annual Conference of the PHM Society, 14. https://doi.org/10.36001/phmconf.2022.
v14i1.3238

Saxena, A., & Goebel, K. (2008). Turbofan engine degradation simulation. In NASA
Ames Research Center, Moffett Field, CA. NASA Prognostics Data Repository. https:
//www.nasa.gov/content/prognostics-center-of-excellence-data-set-repository

Schreiber, J. (2017). Pomegranate: Fast and flexible probabilistic modeling in python. The
Journal of Machine Learning Research, 18(1), 5992–5997.

Teubert, C., Daigle, M. J., Sankararaman, S., Goebel, K., & Watkins, J. (2017). A generic
software architecture for prognostics (GSAP). International Journal of Prognostics and
Health Management, 8(2). https://doi.org/10.36001/ijphm.2017.v8i2.2618

Teubert, C., Jarvis, K., Corbetta, M., Kulkarni, C., & Daigle, M. (2022). ProgPy packages
(Version 1.4). https://nasa.github.io/progpy

Watkins, J., Teubert, C., & Ossenfort, J. (2019). Prognostics as-a-service: A scalable
cloud architecture for prognostics: A scalable cloud architecture for prognostics. Annual
Conference of the PHM Society, 11.

Teubert et al. (2023). ProgPy: Python Packages for Prognostics and Health Management of Engineering Systems. Journal of Open Source
Software, 8(87), 5099. https://doi.org/10.21105/joss.05099.

5

https://doi.org/10.36001/phmconf.2022.v14i1.3238
https://doi.org/10.36001/phmconf.2022.v14i1.3238
https://www.nasa.gov/content/prognostics-center-of-excellence-data-set-repository
https://www.nasa.gov/content/prognostics-center-of-excellence-data-set-repository
https://doi.org/10.36001/ijphm.2017.v8i2.2618
https://nasa.github.io/progpy
https://doi.org/10.21105/joss.05099

	Summary
	Statement of need
	Selected use case: building and simulating models
	Selected use case: prognostics of battery discharge cycle
	NASA use cases
	Data and Reasoning Fabric
	Autonomous Spacecraft Operations

	Acknowledgements
	References

