
Melodie: Agent-based Modeling in Python

Songmin Yu 1* and Zhanyi Hou 2*¶

1 Fraunhofer Institute for Systems and Innovation Research, Germany 2 School of Reliability and
Systems Engineering, Beihang University, China ¶ Corresponding author * These authors contributed
equally.

DOI: 10.21105/joss.05100

Software
• Review
• Repository
• Archive

Editor: Mehmet Hakan Satman

Reviewers:
• @JoelForamitti
• @rusu24edward

Submitted: 21 January 2023
Published: 26 March 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Introduction
Agent-based models (ABMs) characterize physical, biological, and social economic systems
as dynamic interactions among agents from a bottom-up perspective. The agents can be
molecules, animals, or human beings. The interactions can be water molecules forming a
vortex, ants searching for food, or people trading stocks in the market.

Agents’ interactions can bring emergent properties to a system and turn it into a complex
system. The core reason for using ABMs is usually to model such mechanisms. Besides,
taking social economic systems as example, ABMs are also flexible to consider agents’ (1)
heterogeneity (e.g., wealth, risk attitude, preference, decision-making rule, etc.) based on
micro-data; and (2) bounded rationality and adaptation behavior based on psychological and
behavioral studies.

Melodie is a general framework for developing agent-based models (ABMs) in Python. It is
published and maintained on the GitHub organization page of ABM4ALL, a developing community
among agent-based modelers for sharing ideas and resources. Together with the code repository,
we have also published the documentation of Melodie, including a tutorial explaining how a
minimum example - an agent-based covid contagion model - can be developed with Melodie

step by step.

Statement of need
Among numerous frameworks for agent-based modeling in different programming languages,
Mesa (Kazil et al., 2020) and AgentPy (Foramitti, 2021) are the two open-source frameworks
in Python. The object-oriented paradigm of Python seamlessly fits the “agent perspective” of
ABM. Modelers can also benefit from the wealth of packages available for statistical analysis,
data visualization, etc. Following the tradition of NetLogo (Wilensky, 1999), Mesa and AgentPy

both support interactive simulation but with different focus and style.

In summary, Melodie is distinguished from Mesa and AgentPy by the following aspects.

First, Melodie separates an environment component from the model in Mesa and AgentPy

for two dedicated tasks: (1) storing the macro-level variables; and (2) coordinating the
agents’ decision-making and interaction processes. With a separated environment component,
the “storyline” of the model can be clearly summarized under a run function in the model.
Compared to the use of scheduler and step functions in different layers in Mesa and the
bundling of the behavior functions of agents to the AgentList in AgentPy, we think this makes
it easier for users to understand the logic.

Second, Melodie enhances the data_collector component with higher configurability. Users
can define functions for parsing specific data structure from the agents and the environment.
For example, in a financial ABM, the transactions could be saved in the environment

Yu, & Hou. (2023). Melodie: Agent-based Modeling in Python. Journal of Open Source Software, 8(83), 5100. https://doi.org/10.21105/joss.05100. 1

https://orcid.org/0000-0001-6062-4382
https://orcid.org/0000-0001-8524-5370
https://doi.org/10.21105/joss.05100
https://github.com/openjournals/joss-reviews/issues/5100
https://github.com/ABM4ALL/Melodie
https://doi.org/10.5281/zenodo.7771397
https://avesis.istanbul.edu.tr/mhsatman/topics
https://orcid.org/0000-0002-9402-1982
https://github.com/JoelForamitti
https://github.com/rusu24edward
https://creativecommons.org/licenses/by/4.0/
https://github.com/ABM4ALL
https://github.com/ABM4ALL/Melodie
https://abm4all.github.io/Melodie/html/index.html
https://github.com/projectmesa/mesa
https://github.com/JoelForamitti/agentpy
https://ccl.northwestern.edu/netlogo/
https://doi.org/10.21105/joss.05100


as List[Transaction]. Then, in the data_collector, the users could define a function
collect_transaction_data() to first parse the list and to then save the results into the
database.

Third, Melodie has wider infrastructure coverage and provides dedicated modules for scenario
management.

• All input data are first registered and then loaded by a data_loader object into a
scenario object. Then, as the input data container, scenario can be accessed by the
model and its components, including environment, data_collector, and each agent.

• Melodie provides two standard classes - DataFrameInfo and MatrixInfo - with which
the users can register the input dataframes and matrices, so they can be easily processed
by the data_loader and the scenario objects.

In such a data flow, Melodie also checks if the registries are consistent with the input Excel
files automatically. We think such design is helpful, especially when the scenario includes large
and complicated input datasets. Having the channel through “Scenario” for delivering input
data at different parts of the model is also conceptually clear. Finally, Melodie uses an SQLite

database to save (1) a copy of the input data, and (2) the output data, i.e., model results.
The interaction between model and database is facilitated by the DB module in Melodie. Users
can easily save all the data in multiple long tables for post-processing or for sending the single
.sqlite file to others.

Fourth, Melodie includes two modules that are not provided in Mesa and AgentPy: Calibrator,
and Trainer. With these two modules, Melodie supports (1) automatic calibration of scenario
parameters, and (2) evolutionary training of agents.

Fifth, Melodie uses the Cython package to accelerate its compatibility advantage over other
packages like numba. The modules that are written in Cython are agent, environment,
agent_list, and grid.

In the documentation, we also provide a detailed comparison between the three packages -
Mesa, AgentPy, and Melodie - based on one ABM developed with the three packages. You
can find the code in this repository.

Overview
The modules in the Melodie framework can be organized into four clusters: Model, Scenario,
Modeling Manager, and Infrastructure.

Model
The modules in the Model Cluster focus on describing the target system. Developed with
Melodie, a model object can contain following components:

• agent - makes decisions, interacts with others, and stores the micro-level variables.
• agents - contains a list of agents and provides relevant functions.
• environment - coordinates the agents’ decision-making and interaction processes and

stores the macro-level variables.
• data_collector - collects the micro- and macro-level variables from the agents and

environment, and then saves them to the database.
• grid - constructed with spot objects, describes the grid (if exists) that the agents walk

on, stores grid variables, and provides the relevant functions.
• network - constructed with edge objects, describes the network (if exists) that links the

agents, and provides the relevant functions.

Yu, & Hou. (2023). Melodie: Agent-based Modeling in Python. Journal of Open Source Software, 8(83), 5100. https://doi.org/10.21105/joss.05100. 2

https://abm4all.github.io/Melodie/html/framework_comparison.html#model-components
https://github.com/ABM4ALL/ABMFrameworkComparison
https://doi.org/10.21105/joss.05100


Scenario
The modules in the Scenario Cluster focus on formatting, importing, and delivering the input
data to the model, including

• DataFrameInfo and MatrixInfo - used to create standard data objects for input tables.
• data_loader - loads all the input data into the model.
• scenario - contains all the input data that is needed to run the model, and can be

accessed by the model and its components.

Modelling Manager
To combine everything and finally start running, the Modelling Manager Cluster includes three
modules, which can be constructed and run for different objectives:

• Simulator - simulates the logic written in the model.
• Calibrator - calibrates the parameters of the scenario by minimizing the distance

between model output and empirical evidence.
• Trainer - trains the agents to update their behavioral parameters for higher payoff.

Both the Calibrator and Trainer modules are based on a Genetic Algorithm (GA), and the
Trainer framework is introduced in detail in Yu (2022).

Taking the Covid contagion model in the tutorial as an example, as shown below, the simulator

is initialized with a config object (which includes a project name and a set of folder paths)
and the class variables of the model, the scenario, and the data_loader.

from Melodie import Simulator

from config import config

from source.model import CovidModel

from source.scenario import CovidScenario

from source.data_loader import CovidDataLoader

simulator = Simulator(

config = config,

model_cls = CovidModel,

scenario_cls = CovidScenario,

data_loader_cls = CovidDataLoader

)

simulator.run()

Finally, by calling the simulator.run function, the simulation starts.

Infrastructure
The last Infrastructure Cluster includes the modules that provide support for the modules
above.

• Visualizer - provides the APIs to interact with MelodieStudio for visualization.
• MelodieStudio - another library in parallel with Melodie, supports results visualization

and interactive simulation in the browser.
• Config - provides the channel to define project information, e.g., project name, folder

paths.
• DBConn - provides IO functions for the database.
• MelodieException - provides the pre-defined exceptions in Melodie to support debugging.

Yu, & Hou. (2023). Melodie: Agent-based Modeling in Python. Journal of Open Source Software, 8(83), 5100. https://doi.org/10.21105/joss.05100. 3

https://doi.org/10.21105/joss.05100


Resources
On our GitHub organization page ABM4ALL, apart from the Melodie package and its documen-
tation, we also have published a series of example models showing how different modules can
be used, including Grid, Network, Calibrator, Trainer, Visualizer, and MelodieStudio.
These example models are also documented in the “Model Gallery” section in the Melodie

documentation. Finally, for those who are familiar with Mesa or AgentPy, a comparison between
Melodie and the two packages is provided in the documentation, based on the same Covid
contagion model developed with all the three packages.

Acknowledgements
This work is not supported by any funding. Dr. Songmin Yu would like to thank the free and
creative working atmosphere at Fraunhofer ISI, especially the inspiring talks and nice beer time
with colleagues. Zhanyi Hou would like to thank his supervisor, Prof. Shunkun Yang, and his
research partners from Beihang University for their support and guidance for programming.

References
Foramitti, J. (2021). AgentPy: A package for agent-based modeling in Python. Journal of

Open Source Software, 6(62), 3065. https://doi.org/10.21105/joss.03065

Kazil, J., Masad, D., & Crooks, A. (2020). Utilizing Python for agent-based modeling: The
Mesa framework. In R. Thomson, H. Bisgin, C. Dancy, A. Hyder, & M. Hussain (Eds.),
Social, cultural, and behavioral modeling (pp. 308–317). Springer International Publishing.
ISBN: 978-3-030-61255-9

Wilensky, U. (1999). NetLogo. Center for Connected Learning; Computer-Based Modeling,
Northwestern University. Evanston, IL. http://ccl.northwestern.edu/netlogo/

Yu, S. (2022). An agent-based framework for policy simulation: Modeling heterogeneous
behaviors with modified Sigmoid function and evolutionary training. IEEE Transactions on
Computational Social Systems, 1–13. https://doi.org/10.1109/TCSS.2022.3196737

Yu, & Hou. (2023). Melodie: Agent-based Modeling in Python. Journal of Open Source Software, 8(83), 5100. https://doi.org/10.21105/joss.05100. 4

https://github.com/ABM4ALL
https://doi.org/10.21105/joss.03065
http://ccl.northwestern.edu/netlogo/
https://doi.org/10.1109/TCSS.2022.3196737
https://doi.org/10.21105/joss.05100

	Introduction
	Statement of need
	Overview
	Model
	Scenario
	Modelling Manager
	Infrastructure

	Resources
	Acknowledgements
	References

