
hdt-rs: A Rust library for the Header Dictionary
Triples binary RDF compression format

Konrad Höffner 1*¶ and Tim Baccaert2*

1 Institute for Medical Informatics, Statistics, and Epidemiology, Medical Faculty, Leipzig University 2
Independent Researcher, Belgium ¶ Corresponding author * These authors contributed equally.

DOI: 10.21105/joss.05114

Software
• Review
• Repository
• Archive

Editor: Øystein Sørensen
Reviewers:

• @remram44
• @lazear

Submitted: 17 January 2023
Published: 29 April 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
We present the Rust library hdt-rs (named “hdt” in the context of Rust libraries, such as on
crates.io) for the Header Dictionary Triples (HDT) binary RDF compression format. This
allows the writing of high-performance Rust applications that load and query HDT datasets
using triple patterns. Existing Rust applications that use the Sophia library (Champin, 2020)
can easily and greatly reduce their RAM usage by using the provided Sophia HDT adapter.

Preliminaries

RDF
The Resource Description Framework (RDF) is a data model that represents information
using triples, each of which consists of a subject, a predicate, and an object. A set of triples
is called an RDF graph, where the subjects and objects can be visualised as nodes and the
predicates as labelled, directed edges. Predicates are always IRIs (Internationalised Resource
Identifiers), which are generalisations of a URIs that allow additional characters. Subjects and
objects can also be blank nodes and objects can also be literals. There are several text-based
RDF serialisation formats with different compromises between verbosity, ease of automatic
processing, and human readability. For example, the N-Triples representation of the fact “the
mayor of Leipzig is Burkhard Jung” from DBpedia (Lehmann et al., 2015) is:

<http://dbpedia.org/resource/Leipzig> <http://dbpedia.org/ontology/mayor> \

<http://dbpedia.org/resource/Burkhard_Jung> .

Triple Patterns
Triple patterns match a subset of a graph. Each part of the pattern is either a constant or a
variable, resulting in eight different types. We denote the pattern type with all constants as
SPO (subject-predicate-object, matches one or zero triples) and the type with all variables as
??? (matches all triples in the graph). The other triple patterns are denoted analogously.

Header Dictionary Triples
While text-based RDF serialisation formats can be read by humans, they are too verbose to be
practical for large graphs. The serialised size of a graph can be drastically lowered by using the
Header Dictionary Triples binary RDF format, which can be loaded into memory in compressed
form while still allowing for efficient queries. The header contains metadata as uncompressed
RDF that describes the dataset. The dictionary stores all the RDF terms (IRIs, literals, and
blank nodes) in the dataset in compressed form using front-coding (Witten et al., 1999), and

Höffner, & Baccaert. (2023). hdt-rs: A Rust library for the Header Dictionary Triples binary RDF compression format. Journal of Open Source
Software, 8(84), 5114. https://doi.org/10.21105/joss.05114.

1

https://orcid.org/0000-0001-7358-3217
https://doi.org/10.21105/joss.05114
https://github.com/openjournals/joss-reviews/issues/5114
https://github.com/konradhoeffner/hdt
https://doi.org/10.5281/zenodo.7871117
https://osorensen.rbind.io/
https://orcid.org/0000-0003-0724-3542
https://github.com/remram44
https://github.com/lazear
https://creativecommons.org/licenses/by/4.0/
https://crates.io/crates/hdt
https://crates.io/crates/hdt
https://crates.io/crates/sophia
https://doi.org/10.21105/joss.05114


assigns a unique numerical identifier (ID) to each of them. This allows the triples component
to store the adjacency matrix of the graph using those IDs in compressed form.

Figure 1: The Bitmap Triples structure represents the adjacency matrix of the RDF graph as trees.
Image source and further information in Martínez-Prieto et al. (2012).

All patterns with constant subject (SPO, SP?, SO?, and S??) as well as the one with all
variables (???) are answered using the Bitmap Triples structure (see Figure 1), while the other
patterns use the HDT Focused on Querying (HDT-FoQ) extension, see Figure 2. As HDT is a
complex format, we recommend referring to Martínez-Prieto et al. (2012) and Fernández et al.
(2013) for comprehensive documentation.

Figure 2: The HDT Focused on Querying (HDT-FoQ) extension allows efficient queries with ?PO, ?P?,
and ??O patterns. Image source and further information in Martínez-Prieto et al. (2012).

Statement of need
Semantic Web technologies have been adopted by major tech companies in recent years but
widespread use is still inhibited by a lack of freely available performant, accessible, robust, and
adaptable tooling (Hitzler, 2021). SPARQL endpoints provide a standard publication channel
and API to any RDF graph but they are not suitable for all use cases. On small graphs, there
is a large relative overhead in both memory and CPU resources. On large graphs, on the other
hand, query complexity and shared access may cause an overload of the server, causing delayed
or missed responses. The long-term availability of SPARQL endpoints is often compromised
(Buil-Aranda et al., 2013), which impacts all applications that depend on them.

To insulate against such problems, Semantic Web applications can integrate and query an
RDF graph using libraries such as Apache Jena (Carroll et al., 2004) for Java, RDFlib (Swartz
et al., 2023) for Python, librdf (Beckett et al., 2015) for C, or Sophia (Champin, 2020) for
Rust. However these libraries do not scale to large RDF graphs due to their excessive memory

Höffner, & Baccaert. (2023). hdt-rs: A Rust library for the Header Dictionary Triples binary RDF compression format. Journal of Open Source
Software, 8(84), 5114. https://doi.org/10.21105/joss.05114.

2

https://doi.org/10.21105/joss.05114


usage, see Figure 3. To complement hdt-cpp (Arias et al., 2023) and hdt-java (Torres et al.,
2022), we implement HDT in Rust, which is a popular modern, statically typed high-level
programming language that allows writing performant software while ensuring memory safety,
which meets the challenges of Semantic Web adoption. hdt-rs is used by the RDF browser
RickView (Höffner, 2023) via the included Sophia adapter to publish large graphs, for example
LinkedSpending (Höffner et al., 2016) at https://linkedspending.aksw.org, which previously
suffered from frequent downtime when based on a SPARQL endpoint.

Benchmark

Figure 3: Dataset load time, memory usage (resident set size), and ?PO triple pattern query time of
different RDF libraries on an Intel i9-12900k CPU based on the benchmark suite of Champin (2020).
librdf was not benchmarked on 106 triples and beyond due to graph loading times exceeding several
hours. hdt-java produces DelayedString instances that are converted to strings to account for the time
that would otherwise be spent later. The index files created by hdt-java and hdt-cpp produce are deleted
before each run. Versions: Apache Jena 4.6.1, n3.js 1.6.3, librdf 1.0.17, RDFlib 6.2.0, sophia 0.8.0-alpha,
hdt-rs 0.0.13-alpha, hdt-java 3.0.9, hdt-cpp master fbcb31a, OpenJDK 19, Node.js 16.18.0, clang 14.0.6,
Python 3.10.8, rustc 1.69.0-nightly (target-cpu=native), GCC 12.2.1.

Höffner, & Baccaert. (2023). hdt-rs: A Rust library for the Header Dictionary Triples binary RDF compression format. Journal of Open Source
Software, 8(84), 5114. https://doi.org/10.21105/joss.05114.

3

https://linkedspending.aksw.org
https://doi.org/10.21105/joss.05114


Table 1: Rounded averages over four runs on the complete person data dataset containing 10310105
triples (rightmost points in Figure 3) serialised as a 90 MB HDT and 1.2 GB RDF Turtle file. Sorted by
memory usage of the graph. For better comparison, results for hdt_java are given both with and without
calling DelayedString::toString on the results. The measured values are subject to considerable
fluctuations, see the vertical bars in Figure 3.

Library Memory in MB Load Time in ms Query Time in ms
hdt_cpp 112 1985 362
sophia_hdt 263 930 355
hdt_rs 264 912 315
hdt_java (DelayedString) 738 3170 214
hdt_java (String) 785 3476 321
sophia_lg 834 11656 85
sophia 1371 15990 20
jena (java) 5352 40400 159
n3js (js) 12404 100820 654
rdflib (python) 14481 182002 940
librdf (c) – – –

Table 1 demonstrates the advantage of HDT libraries in memory usage, with hdt_cpp using
only 112 MB compared to 834 MB for the most memory-efficient non-HDT RDF library tested,
sophia_lg (LightGraph). When comparing only Rust libraries, sophia_lg still uses over three
times as much memory as hdt_rs. The memory consumption is calculated by comparing the
resident set size before and after graph loading and index generation, with the caveat that the
memory usage may be higher during graph loading. Converting other formats to HDT in the
first place is also a time and memory-intensive process. The uncompressed and fully indexed
Sophia FastGraph (sophia) strongly outperforms the HDT libraries in ?PO query time, with
20ms compared to 214ms respectively 321ms for hdt_java. While being the fastest querying
HDT library in this test, hdt_java has a large memory usage for an HDT library placing it
closer to the much faster sophia_lg. The large overhead on small graph sizes for hdt_java
in Figure 3 suggests that with larger graph sizes, these considerations might yield different
results. In fact, HDT allows loading much larger datasets, but at that point, several of the
tested libraries could not have been included, such as rdflib, which already uses over 14 GB of
memory to load the ~10 million triples. hdt_rs achieves the lowest graph-loading time with
912ms compared to more than 11s for the fastest-loading non-HDT library sophia_lg. hdt_cpp
and hdt_java can speed up loading by reusing previously saved indexes, but these were deleted
between runs to achieve consistent measurements.

Examples
Further examples are available in the API documentation and in the code repository.

Add the dependency to a Rust application
$ cargo add hdt

Load an HDT file
use hdt::Hdt;

use std::{fs::File,io::BufReader};

let f = File::open("example.hdt").expect("error opening file");

let hdt = Hdt::new(BufReader::new(f)).expect("error loading HDT");

Höffner, & Baccaert. (2023). hdt-rs: A Rust library for the Header Dictionary Triples binary RDF compression format. Journal of Open Source
Software, 8(84), 5114. https://doi.org/10.21105/joss.05114.

4

https://docs.rs/hdt/latest/hdt/
https://github.com/KonradHoeffner/hdt/tree/main/examples
https://doi.org/10.21105/joss.05114


Query SP? pattern
Find the mayor of Leipzig from DBpedia using an SP? triple pattern:

hdt.triples_with_pattern(

Some("http://dbpedia.org/resource/Leipzig"),

Some("http://dbpedia.org/ontology/mayor"),

None).next();

Query ?PO pattern
Which city has Burkhard Jung as the mayor?

hdt.triples_with_pattern(

None,

Some("http://dbpedia.org/ontology/mayor"),

Some("http://dbpedia.org/resource/Burkhard_Jung")).next();

Use HDT with the Sophia library
use hdt::{Hdt,HdtGraph};

use hdt::sophia::api::graph::Graph;

use hdt::sophia::api::term::{IriRef, SimpleTerm, matcher::Any};

use std::{fs::File,io::BufReader};

let file = File::open("dbpedia.hdt").expect("error opening file");

let hdt = Hdt::new(BufReader::new(file)).expect("error loading HDT");

let graph = HdtGraph::new(hdt);

// now Sophia can be used as usual

let s = SimpleTerm::Iri(

IriRef::new_unchecked("http://dbpedia.org/resource/Leipzig".into()));

let p = SimpleTerm::Iri(

IriRef::new_unchecked("http://dbpedia.org/ontology/mayor".into()));

let mayors = graph.triples_matching(Some(s),Some(p),Any);

Limitations
HDT is read-only, so for querying and modifying large graphs, we recommend to use a separate
SPARQL endpoint. We do not supply command line tools for converting other formats to and
from HDT. Instead, the tools of hdt-cpp and hdt-java can be used. Extensions such as HDT++
(Hernández-Illera et al., 2015) or iHDT++ (Hernández-Illera et al., 2020) are unsupported.

Acknowledgements
We express our gratitude to Pierre-Antoine Champin for explaining the intricacies of Sophia
and for developing the benchmark suite that the HDT benchmarks are based on and for the
thorough code review. We extend our thanks to Edgard Marx for proofreading the paper.

References
Arias, M., Smith, A. W. S., Diefenbach, D., & Sande, M. V. (2023). HDT library, Java

implementation. In GitHub repository. GitHub. https://github.com/rdfhdt/hdt-cpp

Beckett, D., Frederiksen, M., Robillard, D., & Aalto, L. (2015). Redland librdf RDF API and
triple stores. In GitHub repository. GitHub. https://github.com/dajobe/librdf

Höffner, & Baccaert. (2023). hdt-rs: A Rust library for the Header Dictionary Triples binary RDF compression format. Journal of Open Source
Software, 8(84), 5114. https://doi.org/10.21105/joss.05114.

5

https://github.com/pchampin/sophia_benchmark
https://github.com/KonradHoeffner/hdt_benchmark
https://github.com/rdfhdt/hdt-cpp
https://github.com/dajobe/librdf
https://doi.org/10.21105/joss.05114


Buil-Aranda, C., Hogan, A., Umbrich, J., & Vandenbussche, P.-Y. (2013). SPARQL web-
querying infrastructure: Ready for action? In H. Alani, L. Kagal, A. Fokoue, P. Groth, C.
Biemann, J. X. Parreira, et al. (Eds.), The semantic web – ISWC 2013 (pp. 277–293).
Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-41338-4_18

Carroll, J. J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., & Wilkinson, K. (2004). Jena:
Implementing the semantic web recommendations. Proceedings of the 13th International
World Wide Web Conference on Alternate Track Papers & Posters, 74–83. https://doi.
org/10.1145/1013367.1013381

Champin, P.-A. (2020). Sophia: A Linked Data and Semantic Web toolkit for Rust (E.
Wilde & M. Amundsen, Eds.). The Web Conference 2020: Developers Track. https:
//www2020devtrack.github.io/site/schedule

Fernández, J. D., Martínez-Prieto, M. A., Gutiérrez, C., Polleres, A., & Arias, M. (2013). Binary
RDF representation for publication and exchange (HDT). Web Semantics: Science, Services
and Agents on the World Wide Web, 19, 22–41. https://doi.org/10.2139/ssrn.3198999

Hernández-Illera, A., Martıńez-Prieto, M. A., & Fernández, J. D. (2015). Serializing RDF
in compressed space. Proceedings of the Data Compression Conference 2015, 363–372.
https://doi.org/10.1109/dcc.2015.16

Hernández-Illera, A., Martıńez-Prieto, M. A., Fernández, J. D., & Fariña, A. (2020). iHDT++:
Improving HDT for SPARQL triple pattern resolution. Journal of Intelligent & Fuzzy
Systems, 39(2), 2249–2261. https://doi.org/10.3233/JIFS-179888

Hitzler, P. (2021). A review of the semantic web field. Communications of the ACM, 64(2),
76–83. https://doi.org/10.1145/3397512

Höffner, K. (2023). RickView. In GitHub repository. GitHub. https://github.com/
KonradHoeffner/rickview

Höffner, K., Martin, M., & Lehmann, J. (2016). LinkedSpending: OpenSpending becomes
Linked Open Data. Semantic Web, 7 (1), 95–104. https://doi.org/10.3233/sw-150172

Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P. N., Hellmann,
S., Morsey, M., Van Kleef, P., Auer, S., & Bizer, C. (2015). DBpedia – A large-scale,
multilingual knowledge base extracted from Wikipedia. Semantic Web, 6(2), 167–195.
https://doi.org/10.3233/SW-140134

Martínez-Prieto, M. A., Arias, M., & Fernández, J. D. (2012). Exchange and consumption
of huge RDF data. The Semantic Web: Research and Applications, 437–452. https:
//doi.org/10.1007/978-3-642-30284-8_36

Swartz, A., Eland, A., Nelson, A., Kuchling, A., Sommer, A., Knudsen, A., Cogrel, B., Pelakh,
B., Ogbuji, C., Markiewicz, C., Mungall, C., Scott, D., Krech, D., Jones, D. H., Bowman,
D., Winston, D., Perttula, D., Chuc, E., Torres, E., … Waites, W. (2023). RDFLib. In
GitHub repository. GitHub. https://github.com/RDFLib/rdflib

Torres, P., Arias, M., Verbogh, R., Nikolopoulos, D., Robillard, D., Bendiken, A., Rietveld, L.,
& Beek, W. (2022). C++ implementation of the HDT compression format. In GitHub
repository. GitHub. https://github.com/rdfhdt/hdt-java

Witten, I. H., Witten, I. H., Moffat, A., Bell, T. C., Bell, T. C., Fox, E., & Bell, T. C.
(1999). Managing gigabytes: Compressing and indexing documents and images. Morgan
Kaufmann.

Höffner, & Baccaert. (2023). hdt-rs: A Rust library for the Header Dictionary Triples binary RDF compression format. Journal of Open Source
Software, 8(84), 5114. https://doi.org/10.21105/joss.05114.

6

https://doi.org/10.1007/978-3-642-41338-4_18
https://doi.org/10.1145/1013367.1013381
https://doi.org/10.1145/1013367.1013381
https://www2020devtrack.github.io/site/schedule
https://www2020devtrack.github.io/site/schedule
https://doi.org/10.2139/ssrn.3198999
https://doi.org/10.1109/dcc.2015.16
https://doi.org/10.3233/JIFS-179888
https://doi.org/10.1145/3397512
https://github.com/KonradHoeffner/rickview
https://github.com/KonradHoeffner/rickview
https://doi.org/10.3233/sw-150172
https://doi.org/10.3233/SW-140134
https://doi.org/10.1007/978-3-642-30284-8_36
https://doi.org/10.1007/978-3-642-30284-8_36
https://github.com/RDFLib/rdflib
https://github.com/rdfhdt/hdt-java
https://doi.org/10.21105/joss.05114

	Summary
	Preliminaries
	RDF
	Triple Patterns
	Header Dictionary Triples

	Statement of need
	Benchmark
	Examples
	Add the dependency to a Rust application
	Load an HDT file
	Query SP? pattern
	Query ?PO pattern
	Use HDT with the Sophia library

	Limitations
	Acknowledgements
	References

