The Journal of Open Source Software

DOI: 10.21105/joss.05118

Software
= Review @@
= Repository @
= Archive &7

Editor: Jacob Schreiber ¢z

Reviewers:

= Qtpurcell90
= @bahung

Submitted: 02 December 2022
Published: 06 April 2023

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0

International License (CC BY 4.0).

FitSNAP: Atomistic machine learning with LAMMPS

3, M. A. Cusentino®*, J.
! D. Montes de Oca Zapiain®°>, S
7. E. Sikorski®!, L. Williams ©°, A.

1, C. Sievers!?, N. Lubbers
Goff®1, J. Janssen ®3, M. McCarthy
Nikolov ®!, K. Sargsyan ®°, D. Sema
P. Thompson ®!, and M. A. Wood ®19

A. Rohskopf

1 Center for Computing Research, Sandia National Laboratories, Albuquerque, NM, United States of
America 2 Boeing, Seattle, WA, United States of America 3 Los Alamos National Laboratory, Los
Alamos, NM, United States of America 4 Material, Physical, and Chemical Sciences Center, Sandia
National Laboratories, Albuquerque, NM, United States of America 5 Center for Integrated
Nanotechnologies, Sandia National Laboratories, Albuquerque, NM, United States of America 6
Chemistry, Combustion and Materials Science Center, Sandia National Laboratories, Livermore, CA,
United States of America 7 Department of Mechanical Engineering, Massachusetts Institute of
Technology, Cambridge, MA, United States of America § Corresponding author

Summary

Chemical and physical properties of complex materials emerge from the collective motions of the
constituent atoms. These motions are in turn determined by a variety of interatomic interactions
mediated by the local redistribution of valence electrons about the fixed core electrons and
nuclear charges. Scientific and engineering advances in materials science, chemistry, and many
related fields benefit from our ability to directly sample the equilibrium and kinetic probability
distributions of large collections of atoms and molecules. Classical molecular dynamics (MD)
is a widely used simulation method in which Newton's equations of motion are numerically
integrated forward in time to generate representative atomic trajectories of the atoms, from
which insight into a wide range of material behaviors can be obtained. This simulation
technique is not restricted to the definition of particles as atoms, but is generalizable to other
types of interacting particles, such as coarse-grained beads in polymers, discrete elements
representing granular materials, and fluid mass elements in dissipative particle dynamics. While
all of these simulation methods use the same core algorithms as MD, we restrict our discussion
here to the treatment of interactions between atoms.

Forces on atoms arise from the electronic structure, from electron charge densities that can be
accurately calculated using quantum mechanical methods such as Density Functional Theory
(DFT). While quantum mechanical methods (QM) are accurate, their computational cost scales
at best as the third power of the number of electrons in the system, preventing application
of the method to size and time scales relevant to many phenomena. It is therefore of great
benefit to approximate the forces on atoms using simple empirical expressions for the energy of
a configuration of atoms as a function of their local relative positions. From these functions,
called interatomic potentials or just “potentials”, the forces on atoms can be obtained by
taking gradients with respect to atomic positions. Many of these empirical potentials are

Rohskopf et al. (2023). FitSNAP: Atomistic machine learning with LAMMPS. Journal of Open Source Software, 8(84), 5118. https://doi.org/10. 1

21105/joss.05118.

https://orcid.org/0000-0002-2712-8296
https://orcid.org/0000-0002-9001-9973
https://orcid.org/0000-0001-9505-6442
https://orcid.org/0000-0001-7026-7200
https://orcid.org/0000-0001-9948-7119
https://orcid.org/0000-0003-4388-4953
https://orcid.org/0000-0001-7890-0859
https://orcid.org/0000-0002-2907-6629
https://orcid.org/0000-0002-1037-786X
https://orcid.org/0000-0002-0160-1743
https://orcid.org/0000-0003-3292-6564
https://orcid.org/0000-0002-9062-8293
https://orcid.org/0000-0002-0324-9114
https://orcid.org/0000-0001-5878-4096
https://doi.org/10.21105/joss.05118
https://github.com/openjournals/joss-reviews/issues/5118
https://github.com/FitSNAP/FitSNAP
https://doi.org/10.5281/zenodo.7764752
https://jmschrei.github.io/
https://orcid.org/0000-0003-4230-6625
https://github.com/tpurcell90
https://github.com/bahung
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05118
https://doi.org/10.21105/joss.05118

The Journal of Open Source Software

derived from known physical and chemical interaction models, i.e. covalent, metallic, ionic,
etc. By smoothly truncating these potentials at a suitable cutoff distance, the computational
cost scales linearly in the number of atoms in the system and is amenable to efficient parallel
algorithms available in MD codes such as LAMMPS (Thompson et al., 2022). As a result,
these empirical models can be used to simulate systems that are far beyond the reach of QM.
However, except for highly idealized structures, such as bulk crystals, these empirical models do
not provide reliable surrogates for QM, and are prone to exhibiting unphysical behaviors. In the
last decade, great progress has been made in constructing machine learning (ML) surrogates
for QM potential energy functions. Large datasets of small atomic configurations with energies
and forces evaluated using QM are used to train regression models that map local atomic
environments to atomic energies and forces. By implementing these ML potentials in LAMMPS
and running on large supercomputers, it is possible to simulate systems containing billions of
particles with QM accuracy (Nguyen-Cong et al., 2021). However, the lack of general tools
to facilitate this ML research limits widespread use and progress in the field. To address this
need, we have developed a software package called FitSNAP. FitSNAP provides a general set
of tools that can be used to train and test a wide range of atomistic simulation models.

Statement of need

FitSNAP is a Python package for constructing a wide variety of ML interatomic interaction
models that map local atomic environments to energies, forces, stress or other quantities
associated with atoms. This mapping is achieved by first calculating atomic environment
feature vectors (descriptors), and then using these to learn a regression model. There are
other high-quality atomistic ML software packages in this application space, such as DeepMD
(Wang et al., 2018), n2p2 (Singraber et al., 2019), pacemaker (Bochkarev et al., 2022),
NequlP (Batzner et al., 2022), Allegro (Musaelian et al., 2023), and GAP (Barték et al.,
2010). All of these provide excellent capabilities for their particular class of ML potentials,
but lack the flexibility to accommodate a wide range of descriptors and regression models.
Other software packages like amp (Khorshidi & Peterson, 2016), TorchANI (Gao et al., 2020),
and ACEsuit (Ortner & Kermode, 2020) generalize the ML problem to models with multiple
kinds of descriptors and model forms. After constructing a ML potential, a critical test of its
viability is using it in large-scale production simulations. This ensures its stability and tests its
ability to predict properties and phenomena that it was not explicitly trained on, colloquially
referred to as extrapolation. To achieve this important step some of the aforementioned
software packages provide excellent support for their respective models in large-scale molecular
simulation packages like LAMMPS (Thompson et al., 2022).

A seamless interface with LAMMPS is where FitSNAP stands out; we use native components
of LAMMPS to calculate inputs to our ML models, ensuring full consistency between the
model produced in training and the model used in production MD simulations. In this regard
FitSNAP acts as a multi-scale link between quantum and classical methods; a model is trained
on fine-scale QM data and then seamlessly deployed in large-scale classical MD simulations
on high-performance computing platforms. By using the same LAMMPS code to compute
descriptors in both training and production simulations, we also reduce code duplication,
and increase the rate of innovation by eliminating barriers to deploying new descriptors and
models in large-scale simulations. While FitSNAP uses the Python interface to the LAMMPS
library, it is not tightly integrated with LAMMPS. This allows greater flexibility and speed in
development that would not be possible if it was fully integrated, given the much larger user
base and diversity of use cases that LAMMPS must support. FitSNAP is therefore free to
improve and grow independently of LAMMPS in the area of ML models, while at the same
time maintaining full consistency with LAMMPS data structures and descriptor calculations.
Our interface is achieved by using LAMMPS compute objects; these calculate quantities for a
single configurations of atoms, without performing MD. The compute objects calculate the
descriptors for our ML models, ensuring that descriptors used during training are identical to
the descriptors used in performance-optimized LAMMPS production simulations. This also

Rohskopf et al. (2023). FitSNAP: Atomistic machine learning with LAMMPS. Journal of Open Source Software, 8(84), 5118. https://doi.org/10. 2
21105/joss.05118.

https://doi.org/10.21105/joss.05118
https://doi.org/10.21105/joss.05118

SS

The Journal of Open Source Software

allows performance improvements achieved in the LAMMPS production code to immediately
speed up the training process, rather than having to replicate the code improvements in the
training software. FitSNAP has already taken advantage of this intrinsic LAMMPS interface in
a number of publications that performed large-scale simulations with innovative ML atomistic
models (Cusentino et al., 2020, 2021; Nikolov et al., 2021, 2022; Wood & Thompson, 2018).
LAMMPS supports a rapidly growing and diverse set of descriptors and ML model forms(Zuo
et al., 2020). The interface ensures that all of these can be made accessible to FitSNAP
users, with a small amount of extra glue code. This flexibility is paramount for achieving a
general use ML potential software, since different descriptors and models are appropriate for
different materials physics, different accuracy requirements, and different performance needs
(Zuo et al., 2020). The modularity of FitSNAP components allows one to choose different
models combined with different descriptors; this rapid prototyping can help users find the best
atomistic ML model for their particular application.

Components

Scrape

s

MPI
Parallel
Solver
. R)
Error Analysis B-B'+ (B -a- B = E(r")
° Train 4-44’2%‘\ N
—_ L) | o i @ Xl @S5I
; s £ B 36 e 8 e E(rY)
3 « Validation ele
L 20 — |deal
g .
s°)
T -2
= o
s -4
I.l
-6

6 -4 -2 0 b 4 6
Target force (eV/4)

Figure 1: FitSNAP components and flow of control. The typical workflow involves scraping configurations
of atoms which serve as training data; this is done in the Scraper class. Then we calculate ML features
(atomic environment descriptors) in the Calculator class. Next, the ML problem is solved in the Solver
class, which includes both linear and nonlinear models. This is followed by error analysis and/or model
deployment in LAMMPS.

To generally approach the atomistic ML problem, we abstract components required for scraping
data, calculating descriptors, and solving the optimization problem. The main software
components driving this flow of control are shown in Figure 1. Scraping of training data and
calculating atomic environment descriptors is parallelized over configurations of atoms with help

Rohskopf et al. (2023). FitSNAP: Atomistic machine learning with LAMMPS. Journal of Open Source Software, 8(84), 5118. https://doi.org/10. 3

21105/joss.05118.

https://doi.org/10.21105/joss.05118
https://doi.org/10.21105/joss.05118

The Journal of Open Source Software

from our ParallelTools class. This stores data such as atomic positions, and fitting targets
such as forces and energies, in shared memory arrays accessible to all processors on a compute
node. This is achieved using the Python mpidpy package, allowing both (1) calculation of
atomic environment descriptors in parallel across many configurations of atoms and (2) shared
storage of training data including atomic environment descriptors and fitting targets. The
latter point is vital for storing large amounts of data when using multiple processes on a single
node; without shared arrays the required memory can easily exceed that available on many-core
CPU platforms, since each processor would need to store all the data. The contents of these
shared arrays are then accessible to the FitSNAP components on all processors in a node,
throughout the rest of the workflow. The typical workflow begins with the Scraper class, which
also uses ParallelTools to collect training data in parallel.

Scraper

The first step in the typical FitSNAP flow of control is a file 1/O step to scrape the training
data, the configurations of atoms and their associated energies, forces, spins, charges, or
whatever fitting quantity; this is achieved with the Scraper class. Training data includes
basic structural information about the set of atoms such as Cartesian coordinates and DFT
simulation box vectors. Ground truth values used in the loss function during the regression step
are collected at this stage; this “scraping” occurs in parallel using MPI. Accepted file formats
currently include XYZ and JSON files, which are commonly used in the atomistic modelling
community. These files are stored in directories in a manner determined by the user, where
each directory can designate a FitSNAP data group; each group of configurations can receive
its own training/testing fractions and fitting target weights, offering flexibility in how different
configurations of atoms are weighted or tested during training. When scraping, the data is
stored in a FitSNAP data dictionary that houses positions of atoms and their associated fitting
quantities. While the typical flow of control involves first scraping training data from these files,
using FitSNAP in library mode allows one to bypass this step if the training data is collated
in some other manner, such as with the Atomistic Simulation Environment (ASE), stored in
RAM, and inserted into the FitSNAP data dictionary that houses training data. Nonetheless,
the FitSNAP data dictionary contains atomic positions that are then converted to atomic
environment descriptors in the Calculator class.

Calculator

To transform this structural information into physically appropriate models, we employ the
Calculator class which provides permutation, translationally and rotationally invariant descrip-
tors. These descriptors can be calculated from their performant implementations in LAMMPS,
and then extracted via the LAMMPS Python/C API, which inserts descriptors into the shared
memory arrays of ParallelTools. For descriptors that are not implemented in LAMMPS, we
provide a Custom Calculator class that extracts periodic-boundary-transformed LAMMPS
positions which can be used to calculate custom coded descriptors in Python. This ensures
extensibility of different descriptors for describing atomic environments. Regardless of the
method of descriptor calculation, these calculations are parallelized via MPI over configurations
of atoms stored in the FitSNAP data dictionary. Currently we include Spectral Neighbor
Analysis Potential (SNAP) (Thompson et al., 2015) and Atomic Cluster Environment (ACE)
(Drautz, 2019) descriptors which are both calculated in LAMMPS.

Solver

After collating the necessary descriptors and their target fitting quantities, the Solver class can
either proceed to regression of the ML problem or evaluating the model. The connection between
descriptor calculation, which can happen in LAMMPS, and FitSNAP solvers is exemplified in
Figure 2 for a neural network potential inputting arbitrary atom-centered descriptors. In the
typical flow of control for fitting a potential, Solver creates a loss function measuring difference
between target and model fitting quantities such as energies and forces. This loss function

Rohskopf et al. (2023). FitSNAP: Atomistic machine learning with LAMMPS. Journal of Open Source Software, 8(84), 5118. https://doi.org/10. 4
21105/joss.05118.

https://doi.org/10.21105/joss.05118
https://doi.org/10.21105/joss.05118

The Journal of Open Source Software

is then minimized with a method depending on the choice of user input. For linear models,
solver types include singular value decomposition (SVD) or adaptive rectangular decomposition
(ARD). One advantage of linear models is the possibility to analytically determine uncertainties
in fitting coefficients with Bayesian statistics. FitSNAP therefore also includes uncertainty
quantification (UQ) solvers, which output model coefficient covariances for linear models.

Atom coordinates Descriptors Hidden
(neighbors of i) for atom i layers

Total energy Atomic force
ZE F aD; OE;
- . t J - 61‘1 6D1
i i

S FISNAR

computes autodiff

E.g. compute snap dgradflag 1

Figure 2: LAMMPS-FitSNAP interface for calculating energies and forces with machine learned potentials,
illustrated here with a neural network potential that calculates atomic energies. Descriptor and descriptor
gradient calculations occur in LAMMPS, while model and model gradient calculations occur with
automatic differentiation (autodiff) frameworks in FitSNAP.

For nonlinear models, solver types include neural networks implemented in PyTorch or JAX.
The set of available solver type depends on the form of the ML regression model. To ensure
good computational performance when fitting nonlinear models to forces, we use a modified
form of iterated back-propagation (Smith et al., 2020) where forces are calculated as a first
back-propagation with respect to model inputs, but descriptor gradients are computed with their
performant implementations in LAMMPS. This requires matching or aligning between descriptor
gradients extracted from LAMMPS, and model gradients extracted from ML frameworks like
PyTorch or JAX. To achieve this, we routinely verify the correctness of our forces by comparing
them with finite difference estimates as a part of our continuous integration testing. Ultimately,
after optimizing the ML model with the Solver class, FitSNAP produces LAMMPS-ready files
which may be directly used as inputs to large-scale LAMMPS simulations.

Extensibility

The modularity of these components allows for different Calculator and Solver sub-classes,
allowing for a variety of different descriptor and model combinations. Any descriptor may
be programmed in the Calculator class, which can then be input to any ML model in the
Solver class to perform fitting. This flexibility can also extend to model architectures entirely
different to the commonly used atom-centered networks, such as pairwise networks (Jose et
al., 2012) which are also included in FitSNAP. These custom and less traditional architectures
are readily implemented using LAMMPS periodic-boundary-condition transformed positions.
Aside from flexibility in choosing or implementing various descriptors and models, we also
provide a library mode where a FitSNAP object can be created in any external Python script.
This allows users to access internal methods and break the usual sequential flow of control for
their specific applications. Some users for example may want to extract descriptors for a set
of configurations and perform statistical analysis on that data, access hyperparameters in an
external optimization tool, or even code an entirely new component not mentioned here. This
Python library also allows interface to custom workflow frameworks like pyiron (Janssen et

Rohskopf et al. (2023). FitSNAP: Atomistic machine learning with LAMMPS. Journal of Open Source Software, 8(84), 5118. https://doi.org/10. 5

21105/joss.05118.

https://doi.org/10.21105/joss.05118
https://doi.org/10.21105/joss.05118

S

The Journal of Open Source Software

al., 2019), allowing users to save, share, and modify their workflows for training and using
machine learned potentials. In all cases, the ability to program and use any descriptor or
model based on position data extracted from LAMMPS ensures utmost extensibility to future
atomic environment descriptors and models, while allowing users to enjoy connection to a
high-performance MD engine immediately after training potentials.

Funding Statement

This article has been authored by an employee of National Technology & Engineering Solutions
of Sandia, LLC under Contract No. DE-NA0003525 with the U.S. Department of Energy
(DOE). The employee owns all right, title and interest in and to the article and is solely
responsible for its contents. The United States Government retains and the publisher, by
accepting the article for publication, acknowledges that the United States Government retains
a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published
form of this article or allow others to do so, for United States Government purposes. The DOE
will provide public access to these results of federally sponsored research in accordance with
the DOE Public Access Plan https://www.energy.gov/downloads/doe-public-access-plan.

This paper describes objective technical results and analysis. Any subjective views or opinions
that might be expressed in the paper do not necessarily represent the views of the U.S.
Department of Energy or the United States Government.

All authors acknowledge funding support from the U.S. Department of Energy, Office of Fusion
Energy Sciences (OFES) under Field Work Proposal Number 20-023149 and the Exascale
Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration.

References

Barték, A. P., Payne, M. C., Kondor, R., & Csanyi, G. (2010). Gaussian approximation
potentials: The accuracy of quantum mechanics, without the electrons. Physical Review
Letters, 104(13), 136403. https://doi.org/10.1103/physrevlett.104.136403

Batzner, S., Musaelian, A., Sun, L., Geiger, M., Mailoa, J. P., Kornbluth, M., Molinari,
N., Smidt, T. E., & Kozinsky, B. (2022). E (3)-equivariant graph neural networks for
data-efficient and accurate interatomic potentials. Nature Communications, 13(1), 1-11.
https://doi.org/10.21203/rs.3.rs-244137 /vl

Bochkarev, A., Lysogorskiy, Y., Menon, S., Qamar, M., Mrovec, M., & Drautz, R. (2022).
Efficient parametrization of the atomic cluster expansion. Physical Review Materials, 6(1),
013804. https://doi.org/10.1103/physrevmaterials.6.013804

Cusentino, M. A., Wood, M. A., & Thompson, A. P. (2020). Explicit multielement extension
of the spectral neighbor analysis potential for chemically complex systems. The Journal of
Physical Chemistry A, 124(26), 5456-5464. https://doi.org/10.1021/acs.jpca.0c02450.
s001

Cusentino, M. A., Wood, M. A., & Thompson, A. P. (2021). Beryllium-driven structural
evolution at the divertor surface. Nuclear Fusion, 61(4), 046049. https://doi.org/10.1088/
1741-4326/abe7bd

Drautz, R. (2019). Atomic cluster expansion for accurate and transferable interatomic potentials.
Physical Review B, 99(1), 014104. https://doi.org/10.1103/physrevb.99.014104

Gao, X., Ramezanghorbani, F., Isayev, O., Smith, J. S., & Roitberg, A. E. (2020). TorchANI:
A free and open source PyTorch-based deep learning implementation of the ANI neural

Rohskopf et al. (2023). FitSNAP: Atomistic machine learning with LAMMPS. Journal of Open Source Software, 8(84), 5118. https://doi.org/10. 6
21105/joss.05118.

https://doi.org/10.1103/physrevlett.104.136403
https://doi.org/10.21203/rs.3.rs-244137/v1
https://doi.org/10.1103/physrevmaterials.6.013804
https://doi.org/10.1021/acs.jpca.0c02450.s001
https://doi.org/10.1021/acs.jpca.0c02450.s001
https://doi.org/10.1088/1741-4326/abe7bd
https://doi.org/10.1088/1741-4326/abe7bd
https://doi.org/10.1103/physrevb.99.014104
https://doi.org/10.21105/joss.05118
https://doi.org/10.21105/joss.05118

The Journal of Open Source Software

network potentials. Journal of Chemical Information and Modeling, 60(7), 3408—-3415.
https://doi.org/10.26434 /chemrxiv.12218294

Janssen, J., Surendralal, S., Lysogorskiy, Y., Todorova, M., Hickel, T., Drautz, R., & Neuge-
bauer, J. (2019). Pyiron: An integrated development environment for computational
materials science. Computational Materials Science, 163, 24-36. https://doi.org/10.1016/
j.commatsci.2018.07.043

Jose, K. J., Artrith, N., & Behler, J. (2012). Construction of high-dimensional neural network
potentials using environment-dependent atom pairs. The Journal of Chemical Physics,
136(19), 194111. https://doi.org/10.1063/1.4712397

Khorshidi, A., & Peterson, A. A. (2016). Amp: A modular approach to machine learning
in atomistic simulations. Computer Physics Communications, 207, 310-324. https:
//doi.org/10.1016/j.cpc.2016.05.010

Musaelian, A., Batzner, S., Johansson, A., Sun, L., Owen, C. J., Kornbluth, M., & Kozinsky,
B. (2023). Learning local equivariant representations for large-scale atomistic dynamics.
Nature Communications, 14(1), 579. https://doi.org/10.1038/s41467-023-36329-y

Nguyen-Cong, K., Willman, J. T., Moore, S. G., Belonoshko, A. B., Gayatri, R., Weinberg, E.,
Wood, M. A., Thompson, A. P., & Oleynik, I. I. (2021). Billion atom molecular dynamics
simulations of carbon at extreme conditions and experimental time and length scales.
Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, 1-12. https://doi.org/10.1145/3458817.3487400

Nikolov, S., Tranchida, J., Ramakrishna, K., Lokamani, M., Cangi, A., & Wood, M. (2022).
Dissociating the phononic, magnetic and electronic contributions to thermal conductivity:
A computational study in alpha-iron. Journal of Materials Science, 1-14. https://doi.org/
10.1007/s10853-021-06865-3

Nikolov, S., Wood, M. A., Cangi, A., Maillet, J.-B., Marinica, M.-C., Thompson, A. P.,
Desjarlais, M. P., & Tranchida, J. (2021). Data-driven magneto-elastic predictions with
scalable classical spin-lattice dynamics. Npj Computational Materials, 7(1), 1-12. https:
//doi.org/10.1038 /s41524-021-00617-2

Ortner, C., & Kermode, J. (2020). ACEsuit. GitHub Repository. https://github.com/ACEsuit

Singraber, A., Behler, J., & Dellago, C. (2019). Library-based LAMMPS implementation of
high-dimensional neural network potentials. Journal of Chemical Theory and Computation,
15(3), 1827-1840. https://doi.org/10.1021 /acs.jctc.8b00770.5001

Smith, J. S., Lubbers, N., Thompson, A. P., & Barros, K. (2020). Simple and effi-
cient algorithms for training machine learning potentials to force data. arXiv Preprint
arXiv:2006.05475. https://doi.org/10.2172/1763572

Thompson, A. P., Aktulga, H. M., Berger, R., Bolintineanu, D. S., Brown, W. M., Crozier,
P. S., Veld, P. J. in't, Kohlmeyer, A., Moore, S. G., Nguyen, T. D., & others. (2022).
LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic,
meso, and continuum scales. Computer Physics Communications, 271, 108171. https:
//doi.org/10.1016/j.cpc.2021.108171

Thompson, A. P., Swiler, L. P., Trott, C. R., Foiles, S. M., & Tucker, G. J. (2015). Spectral
neighbor analysis method for automated generation of quantum-accurate interatomic
potentials. Journal of Computational Physics, 285, 316-330. https://doi.org/10.1016/].
jcp.2014.12.018

Wang, H., Zhang, L., Han, J., & Weinan, E. (2018). DeePMD-kit: A deep learning package
for many-body potential energy representation and molecular dynamics. Computer Physics
Communications, 228, 178-184. https://doi.org/10.1016/j.cpc.2018.03.016

Rohskopf et al. (2023). FitSNAP: Atomistic machine learning with LAMMPS. Journal of Open Source Software, 8(84), 5118. https://doi.org/10. 7
21105/joss.05118.

https://doi.org/10.26434/chemrxiv.12218294
https://doi.org/10.1016/j.commatsci.2018.07.043
https://doi.org/10.1016/j.commatsci.2018.07.043
https://doi.org/10.1063/1.4712397
https://doi.org/10.1016/j.cpc.2016.05.010
https://doi.org/10.1016/j.cpc.2016.05.010
https://doi.org/10.1038/s41467-023-36329-y
https://doi.org/10.1145/3458817.3487400
https://doi.org/10.1007/s10853-021-06865-3
https://doi.org/10.1007/s10853-021-06865-3
https://doi.org/10.1038/s41524-021-00617-2
https://doi.org/10.1038/s41524-021-00617-2
https://github.com/ACEsuit
https://doi.org/10.1021/acs.jctc.8b00770.s001
https://doi.org/10.2172/1763572
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1016/j.jcp.2014.12.018
https://doi.org/10.1016/j.jcp.2014.12.018
https://doi.org/10.1016/j.cpc.2018.03.016
https://doi.org/10.21105/joss.05118
https://doi.org/10.21105/joss.05118

The Journal of Open Source Software

Wood, M. A., & Thompson, A. P. (2018). Extending the accuracy of the SNAP interatomic
potential form. The Journal of Chemical Physics, 148(24), 241721. https://doi.org/10.

1063/1.5017641
Zuo, Y., Chen, C.,, Li, X, Deng, Z., Chen, Y., Behler, J., Csanyi, G., Shapeev, A. V., Thompson,

A. P, Wood, M. A., & others. (2020). Performance and cost assessment of machine
learning interatomic potentials. The Journal of Physical Chemistry A, 124(4), 731-745.

https://doi.org/10.1021/acs.jpca.9b08723.5001

Rohskopf et al. (2023). FitSNAP: Atomistic machine learning with LAMMPS. Journal of Open Source Software, 8(84), 5118. https://doi.org/10. 8
21105/joss.05118.

https://doi.org/10.1063/1.5017641
https://doi.org/10.1063/1.5017641
https://doi.org/10.1021/acs.jpca.9b08723.s001
https://doi.org/10.21105/joss.05118
https://doi.org/10.21105/joss.05118

	Summary
	Statement of need
	Components
	Scraper
	Calculator
	Solver

	Extensibility
	Funding Statement
	References

