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Summary
Electroencephalography (EEG) is an indispensable clinical and research tool used to diagnose
neurological disease (Davies & Gavin, 2007; Noachtar & Rémi, 2009; Tierney et al., 2012) and
discover brain circuit mechanisms that support sensory, mnemonic and cognitive processing
(Nuñez & Buño, 2021; Woodman, 2010). Mechanistically, EEGs are non-stationary time-series
that capture alterations in the brain’s electromagnetic field arising from synchronous synaptic
potential changes across neuronal populations. Linear digital signal processing (DSP) tools are
routinely used in EEGs to reduce noise, resample the data, remove artifacts, expose the data’s
spatio-temporal frequency content, and much more. Openseize is a DSP package written in
pure Python that scales to very large EEG datasets, employs an extensible object-oriented
architecture, and provides a familiar Scipy-like API (Virtanen et al., 2020).

Statement of need

Scalable

Current DSP software packages (Cole et al., 2019; Delorme & Makeig, 2004; Gramfort et
al., 2013; Oostenveld et al., 2011; Tadel et al., 2011) make two critical assumptions. First,
that the signals to be analyzed are addressable to virtual memory. Second, that the values
returned from a DSP process, such as filtering, and all subsequent processes are likewise
addressable to memory. Advances in recording technologies over the past decade are degrading
these assumptions. Indeed, thin-film electronics innovations allow for the deposition of a large
number of electrode contacts onto a single recording device that can be left implanted for
months (Thongpang et al., 2011). These high-channel count long-duration recordings pose
a serious challenge to imperatively programmed DSP software in which data is stored as it
passes through and between functions within a program.

Openseize takes a declarative programming approach that allows for constant and tuneable
memory overhead. Specifically, this approach shuttles iterables (called producers) rather than
data between the functions within a program. These memory-efficient producers generate
on-the-fly fragments of processed data. Importantly, all of Openseize’s functions and methods
accept and return producers. This feature allows for the composition of DSP functions into
iterative processing pipelines (Figure 1) that yield processed data lazily during an iteration
protocol such as a for-loop.
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Figure 1: Example DSP pipeline for computing the power spectrum of a large EEG dataset. Each
DSP process in the pipeline receives and returns a producer iterable. At the final stage, the power
spectral density (PSD) estimator requests an array from the downsampled producer triggering all previous
producers to generate a single array.

A consequence of this functional programming approach is that DSP pipelines in Openseize, in
contrast to pipelines relying on Matlab (MATLAB, 2010) and Scipy (Virtanen et al., 2020),
are fully iterative. Restructuring DSP algorithms to support iterative processing is non-trivial
because complex boundary conditions and the need to minimize data transfers between disks
and virtual memory creates significant challenges. To meet these, Openseize uses a first-in
first-out (FIFO) queue data structure to cache arrays. FIFO caching allows previously seen
data to influence the boundary conditions of in-process data and reduces the number of disk
reads. This data structure in combination with both producers and iterative algorithms allows
Openseize to scale to massive data recordings.

Extensibile

In addition to its scalability, Openseize employs an extensible object-oriented architecture.
This feature, missing in many currently available DSP packages, is crucial in neuroscience
research for two reasons. First, there are many different data file types in-use. Abstract base
classes (Gamma et al., 1994) help future developers integrate their file types into Openseize
by identifying required methods needed to create producers that Openseize’s algorithms can
process. Second, DSP operations are strongly interdependent. By identifying and abstracting
common methods, the algorithms in Openseize are smaller, more maintainable and above all,
easier to understand. Figure 2 diagrams the currently available DSP methods grouped by their
abstract types or module names.

Figure 2: Partial list of DSP classes and methods available in Openseize grouped by abstract type and/or
module (gray boxes). Each gray box indicates a point of extensibility either through development of new
concrete classes or functions within a module.

Intuitive API

Finally, Openseize has an intuitive application programming interface (API). While under the
hood, Openseize is using a declarative programming approach, from the end-user’s perspective,
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the calling of its functions are similar to Scipy’s DSP call signatures. The main difference
is that producers do not return DSP processed values when created. Rather, the values are
generated when the producer is iterated over. To help new users understand the implications
of this, Openseize includes extensive in-depth discussions about DSP algorithms and their
iterative implementations in a series of Jupyter notebooks (Kluyver et al., 2016). Importantly,
to maintain the clarity and extensibility of Openseize’s API, graphical user interfaces (GUIs)
have been avoided. This decision reflects the fact that many current DSP packages have
inconsistent APIs depending on whether the modules are invoked from the command-line or a
GUI.

In summary, Openseize fulfills a need in neuroscience research for DSP tools that scale to
large EEG recordings, are extensible enough to handle new data types and methods, and are
accessible to both end-users and developers.
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