
Openseize: A digital signal processing package for
large EEG datasets in Python
Matthew S. Caudill 1,2

1 Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States of America 2
Jan and Dan Duncan Neurological Research Institute at Texas Childrens Hospital, Houston, TX, United
States of America

DOI: 10.21105/joss.05126

Software
• Review
• Repository
• Archive

Editor: Samuel Forbes
Reviewers:

• @szorowi1
• @AJQuinn

Submitted: 20 December 2022
Published: 05 April 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Electroencephalography (EEG) is an indispensable clinical and research tool used to diagnose
neurological disease (Davies & Gavin, 2007; Noachtar & Rémi, 2009; Tierney et al., 2012) and
discover brain circuit mechanisms that support sensory, mnemonic and cognitive processing
(Nuñez & Buño, 2021; Woodman, 2010). Mechanistically, EEGs are non-stationary time-series
that capture alterations in the brain’s electromagnetic field arising from synchronous synaptic
potential changes across neuronal populations. Linear digital signal processing (DSP) tools are
routinely used in EEGs to reduce noise, resample the data, remove artifacts, expose the data’s
spatio-temporal frequency content, and much more. Openseize is a DSP package written in
pure Python that scales to very large EEG datasets, employs an extensible object-oriented
architecture, and provides a familiar Scipy-like API (Virtanen et al., 2020).

Statement of need

Scalable

Current DSP software packages (Cole et al., 2019; Delorme & Makeig, 2004; Gramfort et
al., 2013; Oostenveld et al., 2011; Tadel et al., 2011) make two critical assumptions. First,
that the signals to be analyzed are addressable to virtual memory. Second, that the values
returned from a DSP process, such as filtering, and all subsequent processes are likewise
addressable to memory. Advances in recording technologies over the past decade are degrading
these assumptions. Indeed, thin-film electronics innovations allow for the deposition of a large
number of electrode contacts onto a single recording device that can be left implanted for
months (Thongpang et al., 2011). These high-channel count long-duration recordings pose
a serious challenge to imperatively programmed DSP software in which data is stored as it
passes through and between functions within a program.

Openseize takes a declarative programming approach that allows for constant and tuneable
memory overhead. Specifically, this approach shuttles iterables (called producers) rather than
data between the functions within a program. These memory-efficient producers generate
on-the-fly fragments of processed data. Importantly, all of Openseize’s functions and methods
accept and return producers. This feature allows for the composition of DSP functions into
iterative processing pipelines (Figure 1) that yield processed data lazily during an iteration
protocol such as a for-loop.

Caudill. (2023). Openseize: A digital signal processing package for large EEG datasets in Python. Journal of Open Source Software, 8(84), 5126.
https://doi.org/10.21105/joss.05126.

1

https://orcid.org/0000-0002-3656-9261
https://doi.org/10.21105/joss.05126
https://github.com/openjournals/joss-reviews/issues/5126
https://github.com/mscaudill/openseize
https://doi.org/10.5281/zenodo.7760376
https://orcid.org/0000-0003-1022-4676
https://github.com/szorowi1
https://github.com/AJQuinn
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05126


Figure 1: Example DSP pipeline for computing the power spectrum of a large EEG dataset. Each
DSP process in the pipeline receives and returns a producer iterable. At the final stage, the power
spectral density (PSD) estimator requests an array from the downsampled producer triggering all previous
producers to generate a single array.

A consequence of this functional programming approach is that DSP pipelines in Openseize, in
contrast to pipelines relying on Matlab (MATLAB, 2010) and Scipy (Virtanen et al., 2020),
are fully iterative. Restructuring DSP algorithms to support iterative processing is non-trivial
because complex boundary conditions and the need to minimize data transfers between disks
and virtual memory creates significant challenges. To meet these, Openseize uses a first-in
first-out (FIFO) queue data structure to cache arrays. FIFO caching allows previously seen
data to influence the boundary conditions of in-process data and reduces the number of disk
reads. This data structure in combination with both producers and iterative algorithms allows
Openseize to scale to massive data recordings.

Extensibile

In addition to its scalability, Openseize employs an extensible object-oriented architecture.
This feature, missing in many currently available DSP packages, is crucial in neuroscience
research for two reasons. First, there are many different data file types in-use. Abstract base
classes (Gamma et al., 1994) help future developers integrate their file types into Openseize
by identifying required methods needed to create producers that Openseize’s algorithms can
process. Second, DSP operations are strongly interdependent. By identifying and abstracting
common methods, the algorithms in Openseize are smaller, more maintainable and above all,
easier to understand. Figure 2 diagrams the currently available DSP methods grouped by their
abstract types or module names.

Figure 2: Partial list of DSP classes and methods available in Openseize grouped by abstract type and/or
module (gray boxes). Each gray box indicates a point of extensibility either through development of new
concrete classes or functions within a module.

Intuitive API

Finally, Openseize has an intuitive application programming interface (API). While under the
hood, Openseize is using a declarative programming approach, from the end-user’s perspective,

Caudill. (2023). Openseize: A digital signal processing package for large EEG datasets in Python. Journal of Open Source Software, 8(84), 5126.
https://doi.org/10.21105/joss.05126.

2

https://doi.org/10.21105/joss.05126


the calling of its functions are similar to Scipy’s DSP call signatures. The main difference
is that producers do not return DSP processed values when created. Rather, the values are
generated when the producer is iterated over. To help new users understand the implications
of this, Openseize includes extensive in-depth discussions about DSP algorithms and their
iterative implementations in a series of Jupyter notebooks (Kluyver et al., 2016). Importantly,
to maintain the clarity and extensibility of Openseize’s API, graphical user interfaces (GUIs)
have been avoided. This decision reflects the fact that many current DSP packages have
inconsistent APIs depending on whether the modules are invoked from the command-line or a
GUI.

In summary, Openseize fulfills a need in neuroscience research for DSP tools that scale to
large EEG recordings, are extensible enough to handle new data types and methods, and are
accessible to both end-users and developers.

Acknowledgements
We thank Josh Baker for help in debugging and testing Openseize on real-world EEG data as
well as critical reading of the manuscript. This work was generously supported through the
Ting Tsung and Wei Fong Chao Foundation.

References
Cole, S., Donoghue, T., Gao, R., & Voytek, B. (2019). NeuroDSP: A package for neural

digital signal processing. Journal of Open Source Software, 4(36), 1272. https://doi.org/
10.21105/joss.01272

Davies, P. L., & Gavin, W. J. (2007). Validating the diagnosis of sensory processing disorders
using EEG technology. The American Journal of Occupational Therapy, 61(2), 176–189.
https://doi.org/10.5014/ajot.61.2.176

Delorme, A., & Makeig, S. (2004). EEGLAB: Una caja de herramientas de código abierto para
el análisis de la dinámica de EEG de un solo ensayo, incluido el análisis de componentes
independientes. J. Neurosci. Métodos, 134, 9–21. https://doi.org/10.1016/j.jneumeth.
2003.10.009

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design patterns: Elements of
reusable object-oriented software (B. W. Kernighan, Ed.). Addison-Wesley Professional
Computing Series. ISBN: 978-0-201-63361-0

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C.,
Goj, R., Jas, M., Brooks, T., Parkkonen, L., & Hämäläinen, M. S. (2013). MEG and
EEG data analysis with MNE-Python. Frontiers in Neuroscience, 7(267), 1–13. https:
//doi.org/10.3389/fnins.2013.00267

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley,
K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S., & Willing, C.
(2016). Jupyter notebooks – a publishing format for reproducible computational workflows
(F. Loizides & B. Schmidt, Eds.; pp. 87–90). IOS Press.

MATLAB. (2010). Version 7.10.0 (R2010a). The MathWorks Inc.

Noachtar, S., & Rémi, J. (2009). The role of EEG in epilepsy: A critical review. Epilepsy &
Behavior, 15(1), 22–33. https://doi.org/10.1016/j.yebeh.2009.02.035

Nuñez, A., & Buño, W. (2021). The theta rhythm of the hippocampus: From neuronal and
circuit mechanisms to behavior. Frontiers in Cellular Neuroscience, 15. https://doi.org/10.
3389/fncel.2021.649262

Caudill. (2023). Openseize: A digital signal processing package for large EEG datasets in Python. Journal of Open Source Software, 8(84), 5126.
https://doi.org/10.21105/joss.05126.

3

https://doi.org/10.21105/joss.01272
https://doi.org/10.21105/joss.01272
https://doi.org/10.5014/ajot.61.2.176
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.1016/j.yebeh.2009.02.035
https://doi.org/10.3389/fncel.2021.649262
https://doi.org/10.3389/fncel.2021.649262
https://doi.org/10.21105/joss.05126


Oostenveld, R., Fries, P., Maris, E., Schoffelen, J., & others. (2011). FieldTrip: Open
source software for advanced analysis of MEG, EEG, and invasive electrophysiological
data, computational intelligence and neuroscience. 2011; article ID 156869, 9 p. https:
//doi.org/10.1155/2011/156869

Tadel, F., Baillet, S., Mosher, J., Pantazis, D., & Leahy, R. (2011). Computational intelligence
and neuroscience, 2011. Brainstorm: A User-Friendly Application for Meg/Eeg Analysis, 8.
https://doi.org/10.1155/2011/879716

Thongpang, S., Richner, T. J., Brodnick, S. K., Schendel, A., Kim, J., Wilson, J. A.,
Hippensteel, J., Krugner-Higby, L., Moran, D., Ahmed, A. S., & others. (2011). A micro-
electrocorticography platform and deployment strategies for chronic BCI applications. Clini-
cal EEG and Neuroscience, 42(4), 259–265. https://doi.org/10.1177/155005941104200412

Tierney, A. L., Gabard-Durnam, L., Vogel-Farley, V., Tager-Flusberg, H., & Nelson, C. A.
(2012). Developmental trajectories of resting EEG power: An endophenotype of autism
spectrum disorder. PloS One, 7 (6), e39127. https://doi.org/10.1371/journal.pone.0039127

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson,
J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … SciPy
1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python. Nature Methods, 17, 261–272. https://doi.org/10.1038/s41592-019-0686-2

Woodman, G. F. (2010). A brief introduction to the use of event-related potentials in studies
of perception and attention. Attention, Perception, & Psychophysics, 72(8), 2031–2046.
https://doi.org/10.3758/BF03196680

Caudill. (2023). Openseize: A digital signal processing package for large EEG datasets in Python. Journal of Open Source Software, 8(84), 5126.
https://doi.org/10.21105/joss.05126.

4

https://doi.org/10.1155/2011/156869
https://doi.org/10.1155/2011/156869
https://doi.org/10.1155/2011/879716
https://doi.org/10.1177/155005941104200412
https://doi.org/10.1371/journal.pone.0039127
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.3758/BF03196680
https://doi.org/10.21105/joss.05126

	Summary
	Statement of need
	Scalable
	Extensibile
	Intuitive API


	Acknowledgements
	References

