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Statement of need
The human activity of burning fossil fuels is the driving factor of global warming (Arias et al.,
2021). To promote global climate change mitigation policies, a profound greenhouse gases
(GHG) observational data basis is required to understand and quantify the sources and sinks
of GHG emissions (Arias et al., 2021). Ground-based remote sensing instruments that analyze
direct sunlight using, for example, EM27/SUN fourier-transform infrared spectrometers (FTIR)
(Gisi et al., 2011) fill the gap between ground-based in situ measurements and space-based
measurements by satellites (Hase et al., 2015; Rißmann et al., 2022). Due to its dependency
on direct sunlight and clear skies, the EM27/SUN generally requires a trained operator on site.
Depending on the weather conditions, the operator needs to manually control the instrument
and measurement times. This is time and cost-intensive, in particular, if more than one
instrument is involved. However, state-of-the-art EM27/SUN networks consist of up to 6
instruments to estimate the emissions of cities (Che et al., 2022; Dietrich et al., 2021; Hase et
al., 2015; Ionov et al., 2021; Jones et al., 2021; Tu et al., 2022; Vogel et al., 2019) or local
and regional GHG sources (Chen et al., 2016, 2020; Klappenbach F. et al., 2022; Luther et
al., 2022; Toja-Silva et al., 2017; Tu et al., 2020, 2022). These setups generally require at
least one operator to operate and closely monitor each instrument. Pyra is an automation
software that does not require a trained operator and enables the user to perform EM27/SUN
measurements with a workload limited to system monitoring. This also guarantees continuous
measurements during weekends, holidays, and at remote locations resulting in an optimized
data yield while saving time and human resources. Pyra’s open-source code and documentation
will reduce operator training efforts.

The COllaborative Carbon Column Observing Network (COCCON) (Frey et al., 2019) com-
munity comprises 19 institutions operating over 70 EM27/SUN in Germany, France, Spain,
Finland, Romania, USA, Canada, UK, India, Korea, Botswana, Japan, China, Mexico, Brazil,
Australia, and New Zealand (Tu et al., 2022). Previous studies show the versatile deployment
options of the instruments around the world (Alberti et al., 2022; A. Butz et al., 2017; André
Butz et al., 2022; Hedelius et al., 2016; Kille et al., 2019, 2019; F. Klappenbach et al., 2015;
Knapp et al., 2021; Luther et al., 2019; Velazco et al., 2019; Viatte et al., 2017). Since no
consistent automatization software exists, Pyra, as an open-source automation, will potentially
unify the measurement procedure and facilitate data acquisition.

Previous versions of Pyra were successfully operated during measurement campaigns (Forstmaier
et al., 2022; Humpage et al., 2021) and continuous GHG observations (Dietrich et al., 2021;
Tu et al., 2020). Due to the closed-source nature of these versions, users are dependent on
software and hardware support from Technical University of Munich (TUM). To make Pyra
a useful tool for the growing community we disentangled it from the dependency on TUM
hardware (Dietrich et al., 2021; Heinle & Chen, 2018) and reworked the codebase architecture
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to allow for easier integration of new features.

Summary
Pyra consists of three different parts (Figure 1): Pyra Core (continuous background process),
Pyra Command Line Interface (Pyra CLI), and Pyra User Interface (Pyra UI) (both are used
for on-demand user interaction with Pyra Core). Measurements with an EM27/SUN require
to run CamTracker (Gisi et al., 2011), a software that tracks the sun position and operates
the mirrors accordingly, and OPUS1, a software that sends commands to the EM27/SUN and
collects the output data into interferogram files. As CamTracker and the official OPUS version
only run on a Windows Operating System, Pyra is also required to be run on Windows for full
functionality.

Figure 1: The interaction between Pyra’s software components.

Pyra Core
Pyra Core is implemented as a continuous main loop that manages measurements based on
prevalent weather conditions. Before every loop, it reads the latest version of the configuration
file config.json and adapts accordingly. Pyra Core is designed to run 24/7 and handle runtime
exceptions without human interaction.

Pyra Core allows for three different operation modes: Manual, Automatic, and CLI. In Manual
mode, the user has full control over whether measurements should be active. The user-
controlled state can be updated within the Pyra UI. In Automatic mode, three different
triggers are considered: Sun Elevation, Time, and Helios. Helios evaluates direct sunlight by
analyzing the sharpness of shadow edges created by an external setup precisely designed for
this application (Dietrich et al., 2021). The user can select which of these triggers are to be
considered. Measurements are only set to be running if all selected triggers are fulfilled. In CLI
mode, triggers from external sources can be considered. This option is aimed at teams that
use their own custom-built weather protection enclosures.

In the continuous loop, Pyra Core will run a sequence of modules that operate the individual
components required to perform EM27/SUN measurements autonomously: EnclosureControl,

1https://www.bruker.com/en/products-and-solutions/infrared-and-raman/opus-spectroscopy-software.html
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OPUSMeasurements, SunTracking, and SystemChecks.

EnclosureControl operates the custom TUM weather protection enclosure (Dietrich et al.,
2021; Heinle & Chen, 2018). Without a respective enclosure, this module can be skipped.
The module communicates with the enclosure’s built-in Siemens S7 PLC and powers down the
spectrometer at dusk to extend the overall spectrometer lifetime. At dawn, it powers up the
spectrometer again. Based on the previously described measurement triggers the module will
open and close the cover. Protecting the instrument from bad weather conditions is always
prioritized over performing measurements.

OPUSMeasurements manages the FTIR spectrometer measurement software OPUS. It com-
municates with OPUS via a Dynamic Data Exchange (DDE) connection to load measurement
macro files, and start and stop measurements. During the day OPUS is kept up and running.
During the night OPUS is shut down to reset after a full day of measurements.

SunTracking operates the CamTracker software which controls the mirrors of the EM27/SUN.
By controlling two motors these mirrors are in sync with the current sun position to ensure
sunlight is directed into the instrument. During CamTrackers operation Pyra Core will monitor
the difference between motor positions and calculated sun position in azimuth and elevation.
Whenever the motor offset reaches a certain threshold the CamTracker software will be
reinitialized by Pyra.

Finally, SystemChecks monitors important OS parameters (i.e. CPU, memory, disk space,
power supply) and raises exceptions on certain thresholds.

Whenever exceptions occur or are resolved in any part of Pyra Core, a list of operators will be
notified via email.

Since the measurement data will be post-processed and used on other machines, Pyra Core
includes an upload client that allows uploading interferograms (produced by the EM27/SUN)
and other auxiliary data using SSH while ensuring full data integrity. The upload client runs in
parallel to the measurement procedures.

Pyra CLI
Pyra CLI is designed to offer a text-based interface, which allows full control over Pyra Core
without the need for a graphical user interface. Switching to CLI mode enables different teams
of the community to easily integrate Pyra into their existing hardware solutions and keep their
custom control logic for measurements. It is possible to temporarily disable external CLI-based
measurement decisions by switching back to Manual mode.

The CLI is structured into different command groups (config, core, logs, plc, state). The
config commands can read and write the config.json file and validate its structural integrity
before updating to a new configuration, while the state commands read the latest content
of state.json. The core commands allow direct interaction with the Pyra Core process
and ensure that only one instance of the Pyra Core process is running at a time. The PLC
commands interact with the integrated sensors and actors inside the TUM enclosures.

Pyra CLI is also integrated into Pyra UI and handles communication between the graphical
user interface and Pyra Core.

Pyra UI
Pyra UI provides a graphical user interface (Figure 2) to interact with Pyra Core. In the
background, Pyra CLI sends commands and reads the state- and log files from the file system.

In the Overview tab, a collection of relevant information is presented for a quick check on
Pyra’s activity. In the Automation tab, the different measurement modes (Manual, Automation,
and CLI) can be selected and Pyra Core can be started or stopped. The Configuration tab
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is used to edit the configuration parameters. Since the CLI is used for config updates, all
updated parameter values will be validated and the validation result shown in the UI. In the
Logs tab, the stream of log lines from Pyra Core is displayed. Debug log lines can be hidden
and the updates can be paused for a detailed analysis. If TUM hardware is enabled in the
configuration there is an additional PLC Controls tab. By default, Pyra Core has full control
over the enclosure. If required the user can take over control and interact with the PLC directly.
Examples of manual interaction are adjusting the cover position or toggling power relays.

Figure 2: The overview tab in PYRA’s user interface.

Software Dependencies
The Pyra codebase consists of three software stacks: The Core and the CLI are written in
Python2 and the UI is written in TypeScript3. The documentation is written in Markdown and
rendered as HTML using Docusaurus4.

For Pyra Core and Pyra CLI, we are using Python 3.10 and Python Poetry5 as the dependency
management tool. All Python libraries in use can be found in the pyproject.toml file. Tests
can be run using pytest6. The whole codebase has static type annotations which can be
checked using MyPy7. In addition to that, we are reusing the static type annotations to
validate the JSON files loaded from the location file system with pydantic8.

Pyra UI is written in HTML/CSS and TypeScript using the ReactJS framework9 and Tail-
windCSS10. We are using Vite11 as a build tool and Tauri12 to bundle the web-based
UI into a Windows application. The libraries used by the UI codebase can be found in
packages/ui/package.json.

2https://www.python.org/
3https://www.typescriptlang.org/
4https://docusaurus.io/
5https://python-poetry.org/
6https://github.com/pytest-dev/pytest/
7https://github.com/python/mypy
8https://github.com/pydantic/pydantic
9https://reactjs.org/

10https://tailwindcss.com/
11https://vitejs.dev/
12https://tauri.studio/
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The Pyra Setup Tool depends on Git13 and also comes with a pyproject.toml file. Pyra itself
communicates with OPUS and CamTracker14.
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