
BasicTools: a numerical simulation toolbox
Felipe Bordeu 1¶, Fabien Casenave 1, and Julien Cortial 1

1 Safran Tech, Digital Sciences & Technologies Department, Rue des Jeunes Bois, Châteaufort, 78114
Magny-Les-Hameaux, France ¶ Corresponding author

DOI: 10.21105/joss.05142

Software
• Review
• Repository
• Archive

Editor: Patrick Diehl
Reviewers:

• @hvonwah
• @sthavishtha

Submitted: 07 February 2023
Published: 23 June 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Numerical simulations of physical phenomena can be computed by many (commercial/free)
software packages, but despite the apparent variety, all of them rely on a relatively small set of
operations during the preparation, exploitation, and post-processing of these simulations, e.g.,
handling and modifying meshes and fields. BasicTools is a Python library designed to address
these supporting tasks. It features an efficient data model for meshes and field objects, as well
as input/output routines compatible with various formats. A finite element engine allows it to
assemble abstract variational formulations and integrate fields on volumes and surfaces.

BasicTools is actively used in artificial intelligence and model order reduction (Akkari et al.,
2021; Daniel et al., 2020, 2021, 2022), topology optimization (Nardoni et al., 2022), and
material sciences (Proudhon, 2013-present) projects.

Statement of need
Industrial design tasks often rely on numerical simulation workflows involving different software
packages, each providing its own specific post-processing tools. Common tasks like transferring
computed fields from one tool to another must be routinely implemented, with subtle variations.
This limits interoperability and increases complexity.

BasicTools is a solution to these concerns. It introduces a data model for meshes and
related physical fields that can be populated using different readers and exported using various
writers: no new mesh or solution format is forced upon the user. The data-oriented design
of BasicTools allows high performance operations using a high-level language (Python with
NumPy). BasicTools allows users to convert meshes to other “in-memory” formats (VTK
(Schroeder et al., 2006), PyVista (Sullivan & Kaszynski, 2019), MeshIO (Schlömer, 2015-
present), CGNS (CGNS contributors, 1994-present), and Gmsh (Geuzaine & Remacle, 2009)),
enabling mixing (and reusing) the various treatments available in other frameworks. Other
features available in BasicTools include various mesh handling routines, field transfer operators,
and a flexible finite element engine.

State of the field
In the computational fluid dynamics community, the CFD General Notation System (CGNS)
(CGNS contributors, 1994-present) format is a de-facto standard. However, to the authors’
knowledge, no such standard exists for solid mechanics. One may consider VTK and MeshIO
for mesh manipulation and file format conversion, respectively, but the post-processing of
integration point data, a key requirement in solid mechanics, would not be possible. Most
available tools implement the simple, but potentially dangerous, approach of extrapolating the
integration point values to the nodes of the mesh or averaging in every cell. This can lead to
a misinterpretation of the solution and incorrect engineering decisions. Also, only a few finite

Bordeu et al. (2023). BasicTools: a numerical simulation toolbox. Journal of Open Source Software, 8(86), 5142. https://doi.org/10.21105/joss.
05142.

1

https://orcid.org/0000-0002-0640-5485
https://orcid.org/0000-0002-8810-9128
https://orcid.org/0000-0002-7181-9561
https://doi.org/10.21105/joss.05142
https://github.com/openjournals/joss-reviews/issues/5142
https://gitlab.com/drti/basic-tools
https://doi.org/10.5281/zenodo.8073764
http://www.diehlpk.de
https://orcid.org/0000-0003-3922-8419
https://github.com/hvonwah
https://github.com/sthavishtha
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05142
https://doi.org/10.21105/joss.05142


element engines allow assembling abstract variational formulations on arbitrary geometries,
like FreeFem++ (Hecht, 2012) or FEniCS (Alnæs et al., 2015), amongst others.

Overview
The main features of BasicTools are:

• Meshes (in the Containers module): ConstantRectilinearMesh and UnstructuredMesh

encapsulate respectively the data model for constant rectilinear and unstructured mesh
types. Unstructured meshes are efficient: elements are stored using only one array
for each element type. Both mesh types can feature nodes and element tags. Many
functions are available for creating, cleaning and modifying meshes (e.g., field projection
and mesh morphing).

• Filters (in the Containers module): Various types of ElementFilters and NodeFilters
allow it to handle subparts of meshes by selecting element- and node-sets using threshold
functions, tags, element types, element dimensionality, and masks. Filters can be
combined using Boolean operations (union, complementary, …).

• A finite element engine (in the FE module): A general weak formulation engine able
to integrate fields over parts of the meshes is available. The FETools submodule
contains specific functions for Lagrange P1 finite elements, including the computation of
stiffness and mass matrices. The domain of integration is defined using ElementFilters,
making the integration domain flexible. P0 and P2 Lagrange finite element spaces are
implemented and tested. The framework is non-isoparametric: the user can write weak
formulations mixing P0, P1, and P2 fields on P1 or P2 meshes.

• Input/Output functions (in the IO module): Various readers (alternatively, writers) for
importing (alternatively, exporting) meshes and solution fields from (alternatively, to)
BasicTools’ internal data model are available. Supported formats include geo/geof
(Z-set (Mines ParisTech & ONERA the French aerospace lab, 1981-present)), VTK,
XDMF, SAMCEF, and ABAQUS, and a bridge with MeshIO is provided. Readers for
the ABAQUS and SAMCEF proprietary formats are also enabled when properly licensed
software is available locally. See BasicTools documentation for more details.

• Implicit geometry engine (in the ImplicitGeometry module): Arbitrary subdomains
can be defined using implicit geometries (level-set function). Basic shapes (spheres,
half-spaces, cylinders, cubes), transformations (symmetry, translation, rotation) and
binary operators (union, difference, and intersection) can be used to construct complex
shapes. These shapes can be used to select elements (using ElementFilter), or be
evaluated on point clouds to explicitly construct iso-zero surfaces.

• Linear algebra functions (in the Linalg module): Some common operations on linear sys-
tems for finite elements are implemented: penalization, elimination, Lagrange multipliers,
and the Ainsworth (Ainsworth, 2001) method to impose essential boundary conditions or
linear multi-point constraints. The submodule LinearSolver offers an abstraction layer
for sparse linear solvers, including: Cholesky of the sksparse package; factorized, CG,
lsqr, gmres, lgmres of the scipy.sparse.linalg module; CG, LU, BiCGSTAB, SPQR
of the C++ Eigen library; and the AMG solver of pyamg package.

The large majority of functions are illustrated in the same file where they are defined, in
CheckIntegrity functions.

Examples
We present two examples; see BasicTools documentation for complete details.

Bordeu et al. (2023). BasicTools: a numerical simulation toolbox. Journal of Open Source Software, 8(86), 5142. https://doi.org/10.21105/joss.
05142.

2

https://basictools.readthedocs.io/en/latest/_source/BasicTools.IO.html#submodules
https://basictools.readthedocs.io/en/latest/Examples.html
https://doi.org/10.21105/joss.05142
https://doi.org/10.21105/joss.05142


Pre/post deep learning
Convolution-based deep learning algorithms generally rely on structured data. BasicTools
can be used to transfer a field computed on an unstructured mesh using finite elements to
a structured grid and vice versa. To validate the operation, the error on the final field is
evaluated with respect to the original field.

Figure 1: Deep learning workflow coupled to finite element simulator a) Initial field on unstructured mesh,
b) transferred field into regular grid (projection step), c) inverse projection into original unstructured
mesh, d) projection error on unstructured mesh.

Mechanical analysis: Thick plate with two inclusions
Consider a thick plate with two inclusions, one softer and the other stiffer than the base
material. The plate is clamped on the left side with a constant traction applied on the right
side. We compute the strain energy on only one inclusion. The linear elasticity problem is
solved using P1 Lagrange finite elements on an unstructured mesh.

Figure 2: Analysis of a mechanical thick plate with two inclusions a) illustration of the mesh with
highlighting of the two inclusions, b) magnitude of the displacement solution on the deformed mesh
(with applied traction illustrated), c) strain energy in the large inclusion, d) cutaway view of the strain
energy in the large inclusion (with applied traction illustrated).

Bordeu et al. (2023). BasicTools: a numerical simulation toolbox. Journal of Open Source Software, 8(86), 5142. https://doi.org/10.21105/joss.
05142.

3

https://doi.org/10.21105/joss.05142
https://doi.org/10.21105/joss.05142


References
Ainsworth, M. (2001). Essential boundary conditions and multi-point constraints in finite

element analysis. Computer Methods in Applied Mechanics and Engineering, 190(48),
6323–6339. https://doi.org/10.1016/S0045-7825(01)00236-5

Akkari, N., Casenave, F., Daniel, T., & Ryckelynck, D. (2021). Data-targeted prior distribution
for variational AutoEncoder. Fluids, 6(10). https://doi.org/10.3390/fluids6100343

Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring,
J., Rognes, M. E., & Wells, G. N. (2015). The FEniCS project version 1.5. Archive of
Numerical Software, 3(100). https://doi.org/10.11588/ans.2015.100.20553

CGNS contributors. (1994-present). CFD general notation system. http://cgns.github.io/

Daniel, T., Casenave, F., Akkari, N., & Ryckelynck, D. (2020). Model order reduction assisted
by deep neural networks (ROM-net). Adv. Model. And Simul. In Eng. Sci., 7(16).
https://doi.org/10.1186/s40323-020-00153-6

Daniel, T., Casenave, F., Akkari, N., & Ryckelynck, D. (2021). Data augmentation and feature
selection for automatic model recommendation in computational physics. Math. Comput.
Appl., 26(1). https://doi.org/10.3390/mca26010017

Daniel, T., Casenave, F., Akkari, N., Ryckelynck, D., & Rey, C. (2022). Uncertainty quan-
tification for industrial numerical simulation using dictionaries of reduced order models.
Mechanics & Industry, 23, 3. https://doi.org/10.1051/meca/2022001

Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A 3-d finite element mesh generator with
built-in pre- and post-processing facilities. International Journal for Numerical Methods in
Engineering, 79(11), 1309–1331. https://doi.org/10.1002/nme.2579

Hecht, F. (2012). New development in FreeFem++. Journal of Numerical Mathematics,
20(3-4), 251–266. https://doi.org/10.1515/jnum-2012-0013

Mines ParisTech, & ONERA the French aerospace lab. (1981-present). Zset: Nonlinear
material & structure analysis suite. http://www.zset-software.com

Nardoni, C., Danan, D., Mang, C., Bordeu, F., & Cortial, J. (2022). A R&D software platform
for shape and topology optimization using body-fitted meshes. In R. Sevilla, S. Perotto, &
K. Morgan (Eds.), Mesh generation and adaptation: Cutting-edge techniques (pp. 23–39).
Springer International Publishing. https://doi.org/10.1007/978-3-030-92540-6_2

Proudhon, H. (2013-present). Pymicro. https://github.com/heprom/pymicro

Schlömer, N. (2015-present). meshio: Tools for mesh files. https://github.com/nschloe/meshio

Schroeder, W., Martin, K., & Lorensen, B. (2006). Visualization Toolkit: An object-oriented
approach to 3D graphics (Fourth). Kitware, Inc. https://vtk.org/

Sullivan, C. B., & Kaszynski, A. (2019). PyVista: 3D plotting and mesh analysis through a
streamlined interface for the Visualization Toolkit (VTK). Journal of Open Source Software,
4(37), 1450. https://doi.org/10.21105/joss.01450

Bordeu et al. (2023). BasicTools: a numerical simulation toolbox. Journal of Open Source Software, 8(86), 5142. https://doi.org/10.21105/joss.
05142.

4

https://doi.org/10.1016/S0045-7825(01)00236-5
https://doi.org/10.3390/fluids6100343
https://doi.org/10.11588/ans.2015.100.20553
http://cgns.github.io/
https://doi.org/10.1186/s40323-020-00153-6
https://doi.org/10.3390/mca26010017
https://doi.org/10.1051/meca/2022001
https://doi.org/10.1002/nme.2579
https://doi.org/10.1515/jnum-2012-0013
http://www.zset-software.com
https://doi.org/10.1007/978-3-030-92540-6_2
https://github.com/heprom/pymicro
https://github.com/nschloe/meshio
https://vtk.org/
https://doi.org/10.21105/joss.01450
https://doi.org/10.21105/joss.05142
https://doi.org/10.21105/joss.05142

	Summary
	Statement of need
	State of the field
	Overview
	Examples
	Pre/post deep learning
	Mechanical analysis: Thick plate with two inclusions

	References

