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Introduction
exciting (Gulans et al., 2014) is a full-potential, all-electron, density-functional theory (DFT)
code, which uses linearized augmented plane waves plus local orbitals (LAPWs and LOs,
respectively) for valence and semi-core electrons, and explicitly treats core electrons via the
Dirac equation. This basis set provides a systematic path for reaching the complete-basis-set
limit, relying only on well-controlled numerical approximations. The high precision of the LAPW
basis set makes exciting well-suited for the generation of benchmark-quality data, and to serve
as a reference for other DFT implementations, especially those relying on pseudopotentials.

It has been shown that exciting is able to achieve microhartree precision for total energies in
DFT calculations (Gulans et al., 2018). Also in G0W0 calculations, the complete-basis-set limit
was attained (Nabok et al., 2016). Its high precision has also been unequivocally demonstrated
in the so-called Δ test (Lejaeghere et al., 2016), which compared the relative precision of
several DFT codes for a benchmark set of 71 elemental crystals.

Statement of Need
Materials databases such as NOMAD (Draxl & Scheffler, 2019), AFLOW (Curtarolo et al.,
2012), and the Materials Project (Jain et al., 2013) host millions of DFT results. The majority
of data have been computed with pseudopotential-based DFT codes, and is thus lacking
validation with more precise methods. There is a strong need to provide databases with
benchmark-quality results, which serve to give an indication of the precision one can achieve
in a given material property, with a specific method and settings. For scientists and engineers
who wish to compute specific properties to some required precision, having an indication of
the optimal settings and suitable DFT approximations is extremely valuable. Beyond the
ground state, materials databases for excited state calculations are, in general, strongly lacking.
The generation of large amounts of excited state data will require both reliable ground state
calculations as inputs and analogous benchmark-quality calculations. Moreover, machine
learning models that predict material properties would greatly benefit from the availability of
higher-fidelity data sets for a range of systems (Dong et al., 2022; Draxl & Scheffler, 2020;
Toniato et al., 2021).

With demand for more calculations of higher precision and increased complexity, comes the
need for more complex workflows, handled in a systematic, automated manner. To illustrate
this point in the context of exciting, the choice of the LAPW basis and systematic convergence
of calculations, even at the ground state level of theory, is more involved than with plane
wave or Gaussian type orbital (GTO) basis sets. For example, one is free to choose any
non-overlapping radii for the muffin-tin spheres of each atomic species, and any number of
LAPWs and LOs. And for each of these basis functions, one is also free to choose the matching
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order of radial functions, orbital angular momenta, and trial energy parameters associated with
them (Andersen, 1975; Blaha et al., 2020; Gulans et al., 2014). This is before performing the
conventional convergence tests, as done in all DFT calculations.

In order to perform systematically-converged, reproducible, benchmark-quality calculations for
ground and excited state phenomena (the latter of which will typically include one or more
ground state calculations), a framework is required to assist in the selection of calculation
parameters, the simplification of input file generation, and the post-processing of results.
Furthermore, this framework needs to be interoperable with the ecosystem of existing workflow
tools. These challenges are met by excitingtools.

Summary
excitingtools is a Python package that provides a high-level frontend for the exciting all-
electron DFT package, integrating all aspects of performing a calculation into a single program.
excitingtools has been developed with interoperability in mind, and supports the use of Atomic
Simulation Environment (ASE) (Larsen et al., 2017). Its serialized input classes and output
parsers allow it to be used with higher-level workflow managers such as Jobflow (Ganose et al.,
2022), Atomate (Mathew et al., 2017), and Atomic Simulation Recipes (ASR) (Gjerding et al.,
2021).

excitingtools is an essential utility for simplifying the use of exciting, enabling greater user
control over calculations. Whilst ASE consists of parsers and calculators, its API is largely
restricted to ground state energies and forces. excitingtools exposes more functionality allowing
users, for instance, to analyze their results of different SCF cycles in a calculation, or perform
and parse excited state (e.g. GW) calculations. excitingtools enables automation of complex
convergence calculations, facilitates high-throughput studies, and forms the building blocks
of higher-level workflow managers, all of which are prerequisites for moving DFT codes
towards exascale calculations (Gavini et al., 2022). Furthermore, excitingtools is under active
development and follows a continuous integration/deployment model, such that new features
and updates are delivered several times a year.

Features
• excitingtools allows the user to quickly create a class object with given key-value pairs

in Python, to create input files for exciting in an automated manner.
– This avoids the need for users to manually configure inputs, which is error-prone,

and alleviates the need to frequently write single-purpose scripts.
– ASE’s Atoms class is accepted as a structure input.

• excitingtools provides parsers for fifty exciting output file formats.
– Parsing exciting previously required downloading the NOMAD parsers which return

custom objects, containing copious metadata. This is unnecessary for exciting
users, and prevents straightforward numerical comparison of parsed results.

• API interoperability and serializable data structures allow easy integration with workflow
managers.
– These features allow the user to create simulation input files, run simulations and

analyze data with Python, paving the way to high-throughput calculations with
exciting.
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