
PyBullet Industrial: A process-aware robot simulation
Jan Baumgärtner 1, Malte Hansjosten1, Dominik Schönhofen2, and Prof.
Dr.-Ing. Jürgen Fleischer 1

1 wbk Institute of Production Science 2 Independent Researcher
DOI: 10.21105/joss.05174

Software
• Review
• Repository
• Archive

Editor: Adi Singh
Reviewers:

• @CameronDevine
• @sea-bass

Submitted: 11 November 2022
Published: 18 May 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
The trend towards individualized products and the increasing demand for a greater number of
variants require a rethinking in the production engineering environment. In the context of this
transformation, we see robots taking on more and more manufacturing tasks (Mühlbeier et
al., 2021). The development of this field is hampered by a toolchain gap: While there are a
large number of robot simulations and process simulations there is not yet a simple simulation
environment that combines the two and allows the user to investigate the interplay of both.
Process simulation in this case refers to the simulation of manufacturing processes which
according to (Mourtzis et al., 2014) is defined as the use of one or more physical mechanisms
to transform the shape and/or form of a workpiece. While process simulation is a vast field
that studies different levels of detail, we focus on the simulation of how the process affects the
environment and the robot.

To meet this challenge we developed PyBullet Industrial. This Python package extends
the open-source multi-body physics package PyBullet with manufacturing process models
to simulate manufacturing applications that add material, remove material or simply move
material. A sample of concrete manufacturing applications in each category can be seen in
Figure 3.

The package not only simulates the environmental effect of the processes but also the forces
imparted on the robot. It also allows the dynamic switching of processes with the same robot
corresponding to tool changes during the manufacturing process. The package also contains
utility functions such as path builder classes which are based on G-code (also called RS274)
interpolation schemes (Kramer et al., 2000) or a variety of drawing and visualization functions.
A sample screenshot of a simulation using PyBullet Industrial can be seen in Figure 1.

Baumgärtner et al. (2023). PyBullet Industrial: A process-aware robot simulation. Journal of Open Source Software, 8(85), 5174. https:
//doi.org/10.21105/joss.05174.

1

https://orcid.org/0000-0002-7825-3476
https://orcid.org/0000-0003-0961-7675
https://doi.org/10.21105/joss.05174
https://github.com/openjournals/joss-reviews/issues/5174
https://github.com/WBK-Robotics/pybullet_industrial
https://doi.org/10.5281/zenodo.7833292
https://www.linkedin.com/in/adisin/
https://orcid.org/0000-0002-6382-8441
https://github.com/CameronDevine
https://github.com/sea-bass
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05174
https://doi.org/10.21105/joss.05174


Figure 1: Sample view of Pybullet Industrial

Statement of need
PyBullet Industrial was developed for the interdisciplinary field of robot manufacturing. While
there are a large number of simulation tools for robotics research such as Gazebo (Koenig &
Howard, n.d.), CoppeliaSim (Rohmer et al., 2013), or webots (Michel, 2004), their capabilities
all end at the robot end effector as they are unable to simulate manufacturing processes. In
the same vein, there are several popular FE simulation tools such as Abaqus (Smith, 2009)
capable of simulating process behavior. These simulations end at the tool as they are not
meant to simulate the systems that move the tool. Since robots are now performing more and
more manufacturing tasks studying and accounting for the interaction between robots and
processes becomes ever more important. This requires a simulation that can simulate robots
and processes.

PyBullet Industrial closes this gap by taking classical robot multibody simulations and extending
them using simple process simulations which impact the environment. PyBullet Industrial is
thus the first process-aware robot simulation platform built for research. Note that PyBullet
Industrial neither aims to develop perfect process simulations nor robot simulations, it focuses
on the interplay of both. Example applications of PyBullet Industrial are:

• Designing joint controllers that compensate for the large process forces during milling.
• Designing path planning algorithms for 3D printing that can detect if a robot combines

with a previously printed object.
• Checking the coating of an object in complex scenarios where the object is moved by a

robot while another one is spraying paint.

Overview
Robot simulations typically start at the base and stop at the end effector while process
simulations typically start at the process and end where the tool is connected to the machine.
PyBullet Industrial divides functionality similarly by employing a RobotBase class simulating
the multibody dynamics of a Robot manipulator and an EndeffectorTool class capable of
simulating processes. A sample simulation view with both objects can be seen in Figure 2.

Baumgärtner et al. (2023). PyBullet Industrial: A process-aware robot simulation. Journal of Open Source Software, 8(85), 5174. https:
//doi.org/10.21105/joss.05174.

2

https://doi.org/10.21105/joss.05174
https://doi.org/10.21105/joss.05174


Figure 2: Overview over the two main Objects

These objects can be deployed into a standard PyBullet simulation environment and used to
build manufacturing scenarios.

Robot objects
The RobotBase class builds upon PyBullet’s URDF (Universal Robot Description Format)
(Tola & Corke, 2023) import feature which allows the loading of dynamic multibody robot
models. The class adds several convenient interfaces which allow the setting and measuring of
joint and end effector states. This latter allows the user to reposition the end effector without
worrying about the underlying kinematics. The list of interfaces includes:

• A joint state interface that allows the user to set and read joint positions, velocities, and
torques.

• A end effector state interface that allows the user to set and read the end effector
position, orientation, and velocity. The inverse kinematics is in this case calculated using
PyBullets built-in inverse kinematics solver.

• A world state interface that allows the user to set and read the world position and
orientation of the robot base.

End effector Tools
End effector tools are the main novelty of this library and implement various process models.
An EndeffectorTool object can be coupled with a robot attaching it to the flange of the end
effector. The tool provides a positioning interface that automatically calls the end effector
interface of a coupled robot making it easy to reposition the tool center point in space.

Note that coupling and decoupling of tools can be done during runtime to simulate tool quick
changes common in complex manufacturing cells. The geometry of a specific tools is defined
by a URDF file where the last link is the default tool center point although this can be changed
by the user.

While the base object implements the main interfaces and structure of the class, different
process models are implemented as children of the EndeffectorTool object. These models
can be grouped into three different categories according to how they interact with material as
seen in Figure 3.

Baumgärtner et al. (2023). PyBullet Industrial: A process-aware robot simulation. Journal of Open Source Software, 8(85), 5174. https:
//doi.org/10.21105/joss.05174.

3

https://doi.org/10.21105/joss.05174
https://doi.org/10.21105/joss.05174


Figure 3: Classes of Manufacturing processes that can be simulated using this package

The adding of material is done using the Extruder class which uses raycasts (Roth, 1982) to
spawn objects either on the surface of another object or at the end of the raycast. This is
indicated in Figure 4, which also shows the extruder parameters that can be set.

Figure 4: Extruder parameters visualization

These objects are implemented as Materials that can have different properties from massless
particles sticking to surfaces (such as paint) to physical bodies like 3D printing plastic. By
default, no force is imparted during such processes although custom force models can be added
by implementing the calculate_process_force function.

Removing of material is either done using the MillingTool which uses the Kienzle force model
(Kienzle, 1952) for planar milling or the Remover which is the twin of the Extruder and can
be used to simulate ablative processes such as sandblasting or waterjet cutting. The process
force model for milling can be seen in Figure 5. Here the chip thickness exponent and the
material-specific force are material-dependent.

Baumgärtner et al. (2023). PyBullet Industrial: A process-aware robot simulation. Journal of Open Source Software, 8(85), 5174. https:
//doi.org/10.21105/joss.05174.

4

https://doi.org/10.21105/joss.05174
https://doi.org/10.21105/joss.05174


Figure 5: Cutting Force calculation as described by the Kienzle Model (Kienzle, 1952)

The moving of material is achieved using grippers. PyBullet Industrial supports both finger
grippers and suction grippers for this purpose.

For camera-based applications, the library also contains a camera sensor tool that can be used
to simulate process inspection tasks.

Utility
To make development easier, the library has several utility functions. This includes the
ToolPath class which has a custom iterator making it easy for tools and robots to follow
predetermined paths. These paths can be built using different interpolation functions such
as linear interpolation, spline interpolation, or circular interpolation. Path positions and
orientations can be visualized using drawing functions. These underlying functions can also be
used to visualize arbitrary coordinate systems or robot link poses.

Example Research Applications
Apart from the example applications mentioned in the statement of need, the library is also
already been used in a number of ongoing research projects. These include:

• A study on VR-based robot programming where a welding task was simulated in VR using
PyBullet Industrial. The resulting Project Demonstrator can be seen at the Hannover
Messe 2023.

• A project on automated Electromotor disassembly where the simulation is used to validate
a given disassembly plan including for example the milling away of rusted screws.

Conclusion
PyBullet Industrial is a novel simulation platform for robot manufacturing research. It allows
the simulation of robots and processes in a single environment. While the library offers the
basic functionality to simulate robots and processes, these blocks need to be parameterized
and combined to create a meaningful simulation. Future work will focus on the development
of such parameterization and combination methods. For deployment on real robots, the library
will also be extended to directly parse g-code files and convert them into tool paths. For direct
control, a ROS interface will be added to allow the use of ROS controllers.

Baumgärtner et al. (2023). PyBullet Industrial: A process-aware robot simulation. Journal of Open Source Software, 8(85), 5174. https:
//doi.org/10.21105/joss.05174.

5

https://doi.org/10.21105/joss.05174
https://doi.org/10.21105/joss.05174


References
Kienzle, O. (1952). Die bestimmung von kräften und leistungen an spanenden werkzeugen

und werkzeugmaschinen. Zeitschrift Des Vereins Deutscher Ingenieure, 94, 299–305.

Koenig, N., & Howard, A. (n.d.). Design and use paradigms for gazebo, an open-source
multi-robot simulator. 2004 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS)(IEEE Cat. No. 04CH37566), 3, 2149–2154. https://doi.org/10.1109/
IROS.2004.1389727

Kramer, T., Proctor, F., & Messina, E. (2000). The NIST RS274NGC interpreter - version 3.
NIST Interagency/Internal Report (NISTIR), National Institute of Standards; Technology,
Gaithersburg, MD. https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=823374

Michel, O. (2004). Webots: Professional mobile robot simulation. Journal of Advanced
Robotics Systems, 1(1), 39–42. http://www.ars-journal.com/International-Journal-of-
Advanced-Robotic-Systems/Volume-1/39-42.pdf

Mourtzis, D., Doukas, M., & Bernidaki, D. (2014). Simulation in manufacturing: Review and
challenges. Procedia CIRP, 25, 213–229. https://doi.org/10.1016/j.procir.2014.10.032

Mühlbeier, E., Gönnheimer, P., Hausmann, L., & Fleischer, J. (2021). Value stream kinematics.
Production at the leading edge of technology. WGP 2020. Lecture Notes in Production
Engineering, 409–418. https://doi.org/10.1007/978-3-662-62138-7_41

Rohmer, E., Singh, S. P. N., & Freese, M. (2013). V-REP: A versatile and scalable robot
simulation framework. 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems, 1321–1326. https://doi.org/10.1109/IROS.2013.6696520

Roth, S. D. (1982). Ray casting for modeling solids. Computer Graphics and Image Processing,
18(2), 109–144. https://doi.org/10.1016/0146-664X(82)90169-1

Smith, M. (2009). ABAQUS/standard user’s manual, version 6.9. Dassault Systèmes Simulia
Corp.

Tola, D., & Corke, P. (2023). Understanding URDF: A survey based on user experience.
https://doi.org/10.48550/arXiv.2302.13442

Baumgärtner et al. (2023). PyBullet Industrial: A process-aware robot simulation. Journal of Open Source Software, 8(85), 5174. https:
//doi.org/10.21105/joss.05174.

6

https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1109/IROS.2004.1389727
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=823374
http://www.ars-journal.com/International-Journal-of-%0A%20%20%20%20%20%20%20%20%20%20%20%20%20Advanced-Robotic-Systems/Volume-1/39-42.pdf
http://www.ars-journal.com/International-Journal-of-%0A%20%20%20%20%20%20%20%20%20%20%20%20%20Advanced-Robotic-Systems/Volume-1/39-42.pdf
https://doi.org/10.1016/j.procir.2014.10.032
https://doi.org/10.1007/978-3-662-62138-7_41
https://doi.org/10.1109/IROS.2013.6696520
https://doi.org/10.1016/0146-664X(82)90169-1
https://doi.org/10.48550/arXiv.2302.13442
https://doi.org/10.21105/joss.05174
https://doi.org/10.21105/joss.05174

	Summary
	Statement of need
	Overview
	Robot objects
	End effector Tools
	Utility

	Example Research Applications
	Conclusion
	References

