
Krylov.jl: A Julia basket of hand-picked Krylov
methods
Alexis Montoison 1¶ and Dominique Orban 1

1 GERAD and Department of Mathematics and Industrial Engineering, Polytechnique Montréal, QC,
Canada. ¶ Corresponding author

DOI: 10.21105/joss.05187

Software
• Review
• Repository
• Archive

Editor: Jed Brown
Reviewers:

• @prj-
• @LeilaGhaffari

Submitted: 26 November 2022
Published: 26 September 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Krylov.jl is a Julia (Bezanson et al., 2017) package that implements a collection of Krylov
processes and methods for solving a variety of linear problems:

Square systems Linear least-squares problems Linear least-norm problems
𝐴𝑥 = 𝑏 min ‖𝑏 − 𝐴𝑥‖ min ‖𝑥‖ subject to 𝐴𝑥 = 𝑏

Adjoint
systems

Saddle-point and Hermitian
quasi-definite systems

Generalized saddle-point and
non-Hermitian partitioned systems

𝐴𝑥 = 𝑏
𝐴𝐻𝑦 = 𝑐 [𝑀 𝐴

𝐴𝐻 −𝑁][𝑥𝑦] = [𝑏𝑐] [𝑀 𝐴
𝐵 𝑁][𝑥𝑦] = [𝑏𝑐]

𝐴𝐻 denotes the conjugate transpose of 𝐴. It coincides with 𝐴𝑇, the transpose of 𝐴, if 𝐴 is
real. Krylov methods are iterative methods based on Krylov (1931) subspaces. They are an
alternative to direct methods such as Gaussian elimination or QR decomposition when storage
requirements or computational costs become prohibitive, which is often the case for large
and sparse linear problems. Contrary to direct methods, which require storing 𝐴 explicitly,
Krylov methods support linear operators to model operator-vector products 𝑢 ← 𝐴𝑣, and in
some instances 𝑢 ← 𝐴𝐻𝑤 because Krylov processes only require those operations to build
Krylov subspaces. The same goes with preconditioners, i.e., transformations that modify a
linear system into an equivalent form with favorable spectral properties that may yield faster
convergence in finite-precision arithmetic. We refer interested readers to Ipsen & Meyer (1998)
for an introduction to Krylov methods along with Greenbaum (1997) and Saad (2003) for
more details.

Statement of need

Largest collection of Krylov processes and methods
Krylov.jl aims to provide a user-friendly and unified interface for the largest collection of Krylov
processes and methods, all programming languages taken together, with six and thirty-five
implementations, respectively:

• Krylov processes: ARNOLDI, GOLUB-KAHAN, HERMITIAN LANCZOS, MONTOISON-ORBAN,
NON-HERMITIAN LANCZOS, SAUNDERS-SIMON-YIP

• Krylov methods: BICGSTAB, BILQ, BILQR, CAR, CG, CG-LANCZOS, CG-LANCZOS-SHIFT,
CGLS, CGNE, CGS, CR, CRAIG, CRAIGMR, CRLS, CRMR, DIOM, DQGMRES, FGMRES, FOM,
GMRES, GPMR, LNLQ, LSLQ, LSMR, LSQR, MINARES, MINRES, MINRES-QLP, QMR, SYMMLQ,
TRICG, TRILQR, TRIMR, USYMLQ, USYMQR

Montoison, & Orban. (2023). Krylov.jl: A Julia basket of hand-picked Krylov methods. Journal of Open Source Software, 8(89), 5187.
https://doi.org/10.21105/joss.05187.

1

https://orcid.org/0000-0002-3403-5450
https://orcid.org/0000-0002-8017-7687
https://doi.org/10.21105/joss.05187
https://github.com/openjournals/joss-reviews/issues/5187
https://github.com/JuliaSmoothOptimizers/Krylov.jl
https://doi.org/10.5281/zenodo.8310030
https://jedbrown.org
https://orcid.org/0000-0002-9945-0639
https://github.com/prj-
https://github.com/LeilaGhaffari
https://creativecommons.org/licenses/by/4.0/
https://github.com/JuliaSmoothOptimizers/Krylov.jl
https://doi.org/10.21105/joss.05187


Hence Krylov.jl is a suitable toolbox for easily comparing existing methods with each other as
well as new ones. The number of distinct Krylov methods is twenty-two for PETSc (Balay
et al., 2023), eleven for MATLAB (2022) and KrylovMethods.jl, nine for IterativeSolvers.jl
and three for KrylovKit.jl. However Krylov.jl doesn’t have implementations of recycling Krylov
methods nor block Krylov methods, unlike some alternatives, except for special cases, including
TRICG, TRIMR, and GPMR. Note that we only consider the number of Krylov methods that
generate different iterates without preconditioning. Variants with preconditioning are not
counted except flexible ones such as FGMRES.

Some processes and methods are not available elsewhere and are the product of our own
research. References for each process and method are available in the extensive documentation.
Beyond the number of methods, Krylov.jl is the only package that offers all of the features
that we describe below.

Support for any floating-point system supported by Julia
Krylov.jl works with real and complex data in any floating-point system supported by Julia,
which means that Krylov.jl handles any precision T and Complex{T} where T <: AbstractFloat.
Although most personal computers offer IEEE 754 single and double precision computations,
new architectures implement native computations in other floating-point systems. In addition,
software libraries such as the GNU MPFR, shipped with Julia, let users experiment with
computations in variable, extended precision at the software level with the BigFloat data type.
Working in high precision has obvious benefits in terms of accuracy.

Support for NVIDIA, AMD and Intel GPUs
Krylov methods are well suited for GPU computations because they only require operator-vector
products (𝑢 ← 𝐴𝑣, 𝑢 ← 𝐴𝐻𝑤) and vector operations (‖𝑣‖, 𝑢𝐻𝑣, 𝑣 ← 𝛼𝑢 + 𝛽𝑣), which are
highly parallelizable. The implementations in Krylov.jl are generic so as to take advantage of
the multiple dispatch and broadcast features of Julia. Those allow the implementations to be
specialized automatically by the compiler for both CPU and GPU. Thus, Krylov.jl works with
GPU backends that build on GPUArrays.jl, including CUDA.jl, AMDGPU.jl, and oneAPI.jl, the
Julia interfaces to NVIDIA, AMD, and Intel GPUs.

Support for linear operators
The input arguments of all Krylov.jl solvers that model 𝐴, 𝐵, 𝑀, 𝑁 and preconditioners
can be any object that represents a linear operator. Krylov methods combined with linear
operators allow to reduce computation time and memory requirements considerably by avoiding
building and storing matrices. In nonlinear optimization, finding a critical point of a continuous
function frequently involves linear systems where 𝐴 is a Hessian or a Jacobian. Materializing
such operators as matrices is expensive in terms of operations and memory consumption and
is unreasonable for high-dimensional problems. However, it is often possible to implement
efficient Hessian-vector and Jacobian-vector products, for example with the help of automatic
differentiation tools.

In-place methods
All solvers in Krylov.jl have an in-place variant that allows to solve multiple linear systems with
the same dimensions, precision and architecture. Optimization methods such as the Newton
and Gauss-Newton methods can take advantage of this functionality by allocating workspace
for the solve only once. The in-place variants only require a Julia structure that contains all the
storage needed by a Krylov method as additional argument. In-place methods limit memory
allocations and deallocations, which are particularly expensive on GPUs.

Montoison, & Orban. (2023). Krylov.jl: A Julia basket of hand-picked Krylov methods. Journal of Open Source Software, 8(89), 5187.
https://doi.org/10.21105/joss.05187.

2

https://github.com/JuliaInv/KrylovMethods.jl
https://github.com/JuliaLinearAlgebra/IterativeSolvers.jl
https://github.com/Jutho/KrylovKit.jl
https://juliasmoothoptimizers.github.io/Krylov.jl/stable/
https://github.com/JuliaGPU/GPUArrays.jl
https://github.com/JuliaGPU/CUDA.jl
https://github.com/JuliaGPU/AMDGPU.jl
https://github.com/JuliaGPU/oneAPI.jl
https://doi.org/10.21105/joss.05187


Performance optimizations and storage requirements
Operator-vector products and vector operations are the most expensive operations in Krylov.jl.
The vectors in Krylov.jl are always dense. One may then expect that taking advantage of an
optimized BLAS library when one is available on CPU and when the problem data is stored
in a supported representation should improve performance. Thus, we dispatch vector-vector
operations to BLAS1 routines, and operator-vector operations to BLAS2 routines when the
operator is a dense matrix. By default, Julia ships with OpenBLAS and provides multithreaded
routines. Since Julia 1.6, users can also switch dynamically to other BLAS backends, such as the
Intel MKL, BLIS or Apple Accelerate, thanks to the BLAS demuxing library libblastrampoline,
if an optimized BLAS is available.

A “Storage Requirements” section is available in the documentation to provide the theoretical
number of bytes required by each method. Our implementations are storage-optimal in the
sense that they are guaranteed to match the theoretical storage amount. The match is
verified in the unit tests by way of functions that return the number of bytes allocated by our
implementations.

Examples
Our first example is a simple implementation of the Gauss-Newton method without linesearch
for nonlinear least squares. It illustrates several of the facilities of Krylov.jl: solver preallocation
and reuse, genericity with respect to data types, and linear operators. Another example based
on a simplistic Newton method without linesearch for convex optimization is also available in
the documentation, and illustrates the same concepts in the sections “In-place methods” and
“Factorization-free operators”.

using LinearAlgebra # Linear algebra library of Julia

using SparseArrays # Sparse library of Julia

using Test # Test library of Julia

using Krylov # Krylov methods and processes

using LinearOperators # Linear operators

using ForwardDiff # Automatic differentiation

using Quadmath # Quadruple precision

using MKL # Intel BLAS

"The Gauss-Newton method for Nonlinear Least Squares"

function gauss_newton(F, JF, x₀::AbstractVector{T}; itmax = 200, tol = √eps(T)) where T

n = length(x₀)

x = copy(x₀)

Fx = F(x)

m = length(Fx)

iter = 0

S = typeof(x) # precision and architecture

solver = LsmrSolver(m, n, S) # structure that contains the workspace of LSMR

solved = tired = false

while !(solved || tired)

Jx = JF(x) # Compute J(xₖ)

lsmr!(solver, Jx, -Fx) # Minimize ‖J(xₖ)Δx + F(xₖ)‖

x .+= solver.x # Update xₖ₊₁ = xₖ + Δx

Fx_old = Fx # F(xₖ)

Fx = F(x) # F(xₖ₊₁)

iter += 1

solved = norm(Fx - Fx_old) / norm(Fx) ≤ tol

tired = iter ≥ itmax

Montoison, & Orban. (2023). Krylov.jl: A Julia basket of hand-picked Krylov methods. Journal of Open Source Software, 8(89), 5187.
https://doi.org/10.21105/joss.05187.

3

https://doi.org/10.21105/joss.05187


end

return x

end

T = Float128 # IEEE quadruple precision

x_exact = T[8, 0.25]

x₀ = ones(T, 2)

t = T[1, 2, 3, 4, 5, 6, 7, 8]

y = [trunc(x_exact[1] * exp(x_exact[2] * t[i]), digits=3) for i=1:8]

F(x) = [x[1] * exp(x[2] * t[i]) - y[i] for i=1:8] # F(x)

J(y, x, v) = ForwardDiff.derivative!(y, h -> F(x + h * v), 0) # y ← JF(x)v

Jᵀ(y, x, w) = ForwardDiff.gradient!(y, x -> dot(F(x), w), x) # y ← JFᵀ(x)w

symmetric = hermitian = false

JF(x) = LinearOperator(T, 8, 2, symmetric, hermitian, (y, v) -> J(y, x, v), # non-transpose

(y, w) -> Jᵀ(y, x, w), # transpose

(y, w) -> Jᵀ(y, x, w)) # conjugate transpose

x = gauss_newton(F, JF, x₀)

# Check the solution returned by the Gauss-Newton method

@test norm(x - x_exact) ≤ 1e-4

Our second example concerns the solution of a complex Hermitian linear system from the
SuiteSparse Matrix Collection (Davis & Hu, 2011) with an incomplete Cholesky factorization
preconditioner on GPU. The preconditioner is implemented as an in-place linear operator
that performs the forward and backward sweeps with the Cholesky factor of the incomplete
decomposition. Because the system matrix is Hermitian and positive definite, we use the
conjugate gradient method. However, other methods for Hermitian systems could be used,
including SYMMLQ, CR, and MINRES.

using LinearAlgebra # Linear algebra library of Julia

using SparseArrays # Sparse library of Julia

using Test # Test library of Julia

using Krylov # Krylov methods and processes

using LinearOperators # Linear operators

using MatrixMarket # Reader of matrices stored in the Matrix Market format

using SuiteSparseMatrixCollection # Interface to the SuiteSparse Matrix Collection

using CUDA # Interface to NVIDIA GPUs

using CUDA.CUSPARSE # NVIDIA CUSPARSE library

if CUDA.functional()

ssmc = ssmc_db(verbose=false)

matrices = ssmc_matrices(ssmc, "Sinclair", "3Dspectralwave2")

paths = fetch_ssmc(matrices, format="MM")

path_A = joinpath(paths[1], "3Dspectralwave2.mtx")

# A is an Hermitian and positive definite matrix of size 292008 x 292008

A_cpu = MatrixMarket.mmread(path_A) + 50I

m, n = size(A_cpu)

x_exact = ones(ComplexF64, m)

b_cpu = A_cpu * x_exact

# Transfer the linear system from the CPU to the GPU

A_gpu = CuSparseMatrixCSR(A_cpu)

b_gpu = CuVector(b_cpu)

# Incomplete Cholesky factorization LLᴴ ≈ A with zero fill-in

Montoison, & Orban. (2023). Krylov.jl: A Julia basket of hand-picked Krylov methods. Journal of Open Source Software, 8(89), 5187.
https://doi.org/10.21105/joss.05187.

4

https://doi.org/10.21105/joss.05187


P = ic02(A_gpu)

# Additional vector required for solving triangular systems

z = CUDA.zeros(ComplexF64, n)

# Solve Py = x

function ldiv_ic0!(P, x, y, z)

L = LowerTriangular(P)

Lᴴ = adjoint(L)

ldiv!(z, L, x) # Forward substitution with L

ldiv!(y, Lᴴ, z) # Backward substitution with Lᴴ

return y

end

# Linear operator that approximates the preconditioner P⁻¹ in floating-point arithmetic

T = ComplexF64

symmetric = false

hermitian = true

P⁻¹ = LinearOperator(T, m, n, symmetric, hermitian, (y, x) -> ldiv_ic0!(P, x, y, z))

# Solve an Hermitian positive definite system with an incomplete Cholesky factorization preconditioner

x_gpu, stats = cg(A_gpu, b_gpu, M=P⁻¹)

# Check the solution returned by the conjugate gradient method

x_cpu = Vector{ComplexF64}(x_gpu)

@test norm(x_cpu - x_exact) ≤ 1e-5

end

Acknowledgements
Alexis Montoison is supported by an FRQNT grant and an excellence scholarship of the IVADO
institute, and Dominique Orban is partially supported by an NSERC Discovery Grant.

References
Balay, S., Abhyankar, S., Adams, M. F., Benson, S., Brown, J., Brune, P., Buschelman, K.,

Constantinescu, E., Dalcin, L., Dener, A., Eijkhout, V., Faibussowitsch, J., Gropp, W.
D., Hapla, V., Isaac, T., Jolivet, P., Karpeev, D., Kaushik, D., Knepley, M. G., … Zhang,
J. (2023). PETSc/TAO users manual (ANL-21/39 - Revision 3.19). Argonne National
Laboratory. https://doi.org/10.2172/1968587

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to
numerical computing. SIAM Review, 59(1), 65–98. https://doi.org/10.1137/141000671

Davis, T., & Hu, Y. (2011). The University of Florida sparse matrix collection. ACM
Transactions on Mathematical Software, 38(1), 1–25. https://doi.org/10.1145/2049662.
2049663

Greenbaum, A. (1997). Iterative methods for solving linear systems. SIAM. https://doi.org/
10.1137/1.9781611970937

Ipsen, I. C., & Meyer, C. D. (1998). The idea behind Krylov methods. The American Mathe-
matical Monthly, 105(10), 889–899. https://doi.org/10.1080/00029890.1998.12004985

Krylov, A. N. (1931). On the numerical solution of the equation by which, in technical matters,
frequencies of small oscillations of material systems are determined. Izvestija AN SSSR

Montoison, & Orban. (2023). Krylov.jl: A Julia basket of hand-picked Krylov methods. Journal of Open Source Software, 8(89), 5187.
https://doi.org/10.21105/joss.05187.

5

https://doi.org/10.2172/1968587
https://doi.org/10.1137/141000671
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1137/1.9781611970937
https://doi.org/10.1137/1.9781611970937
https://doi.org/10.1080/00029890.1998.12004985
https://doi.org/10.21105/joss.05187


(News of Academy of Sciences of the USSR), Otdel. Mat. I Estest. Nauk, 7 (4), 491–539.

MATLAB. (2022). Version 9.13.0 (R2022b). The MathWorks Inc.

Saad, Y. (2003). Iterative methods for sparse linear systems. SIAM. https://doi.org/10.1137/
1.9780898718003

Montoison, & Orban. (2023). Krylov.jl: A Julia basket of hand-picked Krylov methods. Journal of Open Source Software, 8(89), 5187.
https://doi.org/10.21105/joss.05187.

6

https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.21105/joss.05187

	Summary
	Statement of need
	Largest collection of Krylov processes and methods
	Support for any floating-point system supported by Julia
	Support for NVIDIA, AMD and Intel GPUs
	Support for linear operators
	In-place methods
	Performance optimizations and storage requirements

	Examples
	Acknowledgements
	References

