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Summary
A Cartesian impedance controller is a type of control strategy that is used in robotics to regulate
the motion of robot manipulators. This type of controller is designed to provide a robot with
the ability to interact with its environment in a stable and compliant manner. Impedance
control increases the safety in contact-rich environments by establishing a mass-spring-damper
relationship between the external forces acting on the robot and the variation from its reference
defined by a set of coordinates that describe the motion of a robot. As a consequence, the
controlled robot behaves in a compliant way with respect to its external forces, which has
the added benefit of allowing a human operator to interact with the robot, such as manually
guiding it.

In this package, we provide a C++ implementation of a controller that allows collaborative
robots:

1. To achieve compliance in Cartesian task-frame coordinates;
2. To allow for joint compliance in the nullspace of task-frame coordinates; and
3. To be able to apply desired forces and torques to their environments, e.g., for direct

force control.

This package can be used in any torque-controlled robotic manipulator. Its implementation in
Robot Operating System (ROS) integrates it into ros_control (Chitta et al., 2017) and can
automatically utilize the Unified Robot Description Format (URDF) description of the robot’s
geometry.

Statement of Need
Modern robotics is moving more and more past the traditional robot systems that have
hard-coded paths and stiff manipulators. Many use cases require the robots to work in
semi-structured environments. These environments impose uncertainties that could cause
collisions. Furthermore, many advanced assembly, manufacturing, and household scenarios
such as insertions or wiping motions require the robot to excert a controlled force on the
environment. Finally, the robot workspace is becoming increasingly shared with human workers
to leverage both agents and allow them to complement each other.

An implementation of compliant control for robotic manipulators is an attractive solution for
robots in contact-rich environments. To cover the wide variety of tasks and scenarios, we think
that it needs to fulfill the following criteria:

1. Dynamically adapt the end-effector reference point.
2. Dynamically adjust the robot’s impedance (i.e., its ability to resist or comply with external

forces).
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3. Apply commanded forces and torques (i.e., a wrench) with the end-effector of the robot.
4. Command a joint configuration and apply it in the nullspace of the Cartesian robotic

task.
5. Execute joint-space trajectories.

A complete implementation with respect to items 1–5 above of compliance for torque-
commanded robotic manipulators is not available, and the existing solutions franka_ros

(Franka Emika, 2017a) and libfranka (Franka Emika, 2017b) as well as the KUKA FRI
Cartesian impedance controller can only be used for a single type of robotic manipulator:

KUKA FRI
controller franka_ros libfranka This package

Reference Pose Update (x)1 x x
Cartesian Stiffness Update x x
Cartesian Wrench Update (x)1 x
Nullspace Control ? x x
Kinesthetic Teaching (x)2,3 x (x)3 x
Trajectory Execution x
Multi-Robot Support x

This implementation offers a base library that can easily be integrated into other software
and also implements a ros_control controller on top of the base library for the popular ROS
middleware. The base library can be used with simulation software such as DART (Lee et al.,
2018). It is used for contact-rich applications such as wiping a surface Mayr et al. (2023).
Furthermore it is used in several research papers such as those by Mayr, Ahmad, et al. (2022);
Mayr, Hvarfner, et al. (2022); Ahmad et al. (2022); and Ahmad et al. (2023) that explore
reinforcement learning as a strategy to accomplish contact-rich industrial robot tasks.

The Robot Operating System (ROS) is an open-source middleware that is widely used in the
robotics community for the development of robotic software systems (Quigley et al., 2009).
Within ROS, an implementation of compliant control is available for position-commanded
and velocity-commanded robotic manipulators with the cartesian_controllers package
(Scherzinger et al., 2017). However, if a robotic manipulator supports direct control of the joint
torques, e.g., the KUKA LBR iiwa or the Franka Emika Robot (Panda), torque-commanded
Cartesian impedance control is often the preferred control strategy, since a stable compliant
behavior might not be achieved for position-commanded and velocity-commanded robotic
manipulators (Lawrence, 1988).

Control Implementation
The gravity-compensated rigid-body dynamics of the controlled robot can be described, in the
joint space of the robot 𝑞 ∈ ℝ𝑛, as (Siciliano & Khatib, 2016):

𝑀(𝑞) ̈𝑞 + 𝐶(𝑞, ̇𝑞) ̇𝑞 = 𝜏c + 𝜏 ext (1)

where 𝑀(𝑞) ∈ ℝ𝑛×𝑛 is the generalized inertia matrix, 𝐶(𝑞, ̇𝑞) ∈ ℝ𝑛×𝑛 captures the effects
of Coriolis and centripetal forces, 𝜏c ∈ ℝ𝑛 represents the input torques, and 𝜏 ext ∈ ℝ𝑛

represents the external torques, with 𝑛 being the number of joints of the robot. Since the
proposed controller was evaluated using robots that are automatically gravity-compensated
(KUKA LBR iiwa and Franka Emika Robot (Panda)), the gravity-induced torques have not
been included in Equation 1. However, the proposed controller can be used in robots that

1An FRI connection can send either joint position updates or wrench updates
2Reaching a joint limit triggers a safety stop
3Can be implemented by setting the Cartesian stiffness to zero
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are not automatically gravity-compensated by adding a gravity-compensation term to the
commanded torque signal, 𝜏c.

Moreover, the torque signal commanded by the proposed controller to the robot, 𝜏c in
Equation 1, is composed by the superposition of three joint-torque signals:

𝜏c = 𝜏 cac + 𝜏nsc + 𝜏 extc (2)

where

• 𝜏 cac is the torque commanded to achieve a Cartesian impedance behavior (Hogan, 1985)
with respect to a Cartesian pose reference in the 𝑚-dimensional task space, 𝜉D ∈ ℝ𝑚,
in the frame of the end-effector of the robot:

𝜏 cac = 𝐽T(𝑞) [−𝐾caΔ𝜉 −𝐷ca𝐽(𝑞) ̇𝑞] (3)

with 𝐽(𝑞) ∈ ℝ𝑚×𝑛 being the Jacobian relative to the end-effector (task) frame of the
robot, and 𝐾ca ∈ ℝ𝑚×𝑚 and 𝐷ca ∈ ℝ𝑚×𝑚 being the virtual Cartesian stiffness and
damping matrices, respectively. Also, the Cartesian pose error, Δ𝜉 in Equation 3 is
defined as Δ𝜉tr = 𝜉tr − 𝜉Dtr for the translational degrees of freedom of the Cartesian
pose and as Δ𝜉ro = 𝜉ro (𝜉Dro)

−1 for the rotational degrees of freedom.

• 𝜏nsc is the torque commanded to achieve a joint impedance behavior with respect to a
desired configuration and projected in the null-space of the robot’s Jacobian, to not
affect the Cartesian motion of the robot’s end-effector (Ott, 2008):

𝜏nsc = (𝐼𝑛 − 𝐽T(𝑞)(𝐽T(𝑞))†) 𝜏0 (4)

with the superscript † denoting the Moore-Penrose pseudoinverse matrix (Khatib, 1995)4
given by 𝐽† = (𝐽T𝐽)−1𝐽T (Ben-Israel & Greville, 2003), and 𝜏0 being an arbitrary joint
torque formulated to achieve joint compliance,

𝜏0 = −𝐾ns(𝑞 − 𝑞D) − 𝐷ns ̇𝑞 (5)

where 𝐾ns ∈ ℝ𝑛×𝑛 and 𝐷ns ∈ ℝ𝑛×𝑛 are the virtual joint stiffness and damping matrices,
respectively.

• 𝜏 extc is the torque commanded to achieve the desired external force command in the
frame of the end-effector of the robot, 𝐹 ext

c :

𝜏 extc = 𝐽T(𝑞)𝐹 ext
c (6)

Safety Measures
As described in Figure 1, there are several safety measures that have been implemented in the
controller to achieve a smooth behavior of the robot:

Filtering

The proposed controller allows the online modification of relevant variables: 𝜉D, 𝐾ca and 𝐷ca

in Equation 3, 𝐾ns and 𝐷ns in Equation 5, and 𝐹 ext
c in Equation 6. However, for a smoother

behavior of the controller, the values of these variables are low-pass filtered. The update law
at each time-step 𝑘 is:

𝛼𝑘+1 = (1 − 𝑎)𝛼𝑘 + 𝑎𝛼D (7)
where 𝛼D is the desired new variable value and 𝑎 ∈ (0, 1] is defined in such a way that a
user-defined percentage of the difference between the desired value 𝛼D and the variable value
at the time of the online modification instruction, 𝛼0, is applied after a user-defined amount
of time.

4The Moore–Penrose pseudoinverse is computationally cheap and allows a null-space projection disregarding
the dynamics of the robot. However, not using the dynamics of the robot to fomulate a pseudoinverse matrix
for null-space projection may cause that a non-zero arbitrary torque, 𝜏0 in Equation 4, generates interfering
forces in the Cartesian space if the joint of the robot are not in a static equilibrium ( ̇𝑞 = ̈𝑞 = 0).
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Saturation

To increase safety in the controller, some of the filtered variables (the stiffness and damping
factors 𝐾ca, 𝐷ca, 𝐾ns, and 𝐷ns, and the desired external force command 𝐹 ext

c ) can be
saturated between user-defined maximum and minimum limits, i.e., for an example variable 𝛼:

𝛼min ≤ 𝛼 ≤ 𝛼max (8)

Rate Limiter

The rate of the commanded torque, 𝜏c in Equation 2, can be limited. For two consecutive
commands at times 𝑘 and 𝑘 + 1:

Δ𝜏max ≥ ‖𝜏c,𝑘+1 − 𝜏c,𝑘‖ (9)

Block Diagram

Base Library

StiffnessCommanded
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SaturationSaturation
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ROS Controller
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Dynamic Reconfigure

Figure 1: Block diagram of the controller.
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