The Journal of Open Source Software

SCALib: A Side-Channel Analysis Library

Gaétan Cassiers ® 2™ and Olivier Bronchain ®*
1 UCLouvain, Belgium 2 TU Graz, Austria § Corresponding author * These authors contributed equally.
DOI: 10.21105/joss.05196

Software

» Review & Summary

= Repository @
Side-channel attacks exploit unintended leakage from an electronic device in order to retrieve
secret data. In particular, attacks exploiting physical side-channels such as power consumption
or electromagnetic radiations to recover cryptographic keys are an important threat to embedded
devices. Countermeasures against these attacks have been extensively researched for more
than two decades and are often deployed in security-critical devices.

= Archive 7

Editor: Nikoleta Glynatsi 2
Reviewers:

A side-channel attack is made of three steps. First, the leakage is measured. Then, a statistical
processing is applied to this leakage in order to infer the internal behavior of the device
(typically, an intermediate state of the cryptographic algorithm). Finally, the cryptographic key
Submitted: 16 February 2023 is recovered from the known behavior (Standaert et al., 2009).

Published: 01 June 2023

= @nicolaimueller
= @JannikZeitschner

For the statistical processing, we distinguish between two classes of attacks, based on the use
License of a profiling dataset. Such a dataset consists of leakage measurements on a device running the
Authors of papers retain copyright cryptographic algorithm with the known key. Profiled attacks use this data to fit a statistical
and release the work under a model (or train a machine-learning model) of the device, while non-profiled attacks have to

Creative Commons Attribution 4.0\ o 5 priori models and are therefore less powerful (Chari et al., 2002).
International License (CC BY 4.0).

There are two main approaches for evaluating the security of devices against side-channel
attacks. First, attack-based evaluations try to attack the device and report their success or
failure. In case of success, the main figure of merit is the number of traces (i.e., number of
executions of a cryptographic algorithm for which the leakage is measured). Second, detection-
based evaluations try to detect the presence of key-dependent leakage and sometimes quantify
it. These two types of methods can be complementary in the evaluation of a device.

Side-channel evaluations are used in various research contexts, such as analyzing the effective-
ness of a newly proposed countermeasure or analyzing a widely deployed device. In SCAL1ib,
we implement algorithms for commonly used metrics and methods in side-channel security
evaluations, attack-based and evaluation-based. We focus on the requirements of evaluations
and do not implement complete attacks when they are not needed to evaluate the security of
a device.

SCAL1b is distributed as a Python package and uses 16-bit integer NumPy (Harris et al., 2020)
arrays for leakage traces. For the sake of efficiency, most algorithms are implemented in Rust,
allowing fine control of the memory accesses and enabling efficient parallelization.

Statement of need

Many of the algorithms used in side-channel security evaluations are well-known statistical
techniques. For instance, the widely used TVLA methodology is based on the Welch t-test
for the difference of means (Schneider & Moradi, 2015). Also, when modeling the leakage,
techniques such as Linear Discriminant Analysis (LDA) (Standaert & Archambeau, 2008)
can be used. While implementations of these algorithms are fairly easy to find, our use-case
has a few particularities that motivate dedicated implementations. For example, the number

Cassiers, & Bronchain. (2023). SCALib: A Side-Channel Analysis Library. Journal of Open Source Software, 8(86), 5196. https://doi.org/10. 1
21105/joss.05196.

https://orcid.org/0000-0001-5426-9345
https://orcid.org/0000-0001-7595-718X
https://doi.org/10.21105/joss.05196
https://github.com/openjournals/joss-reviews/issues/5196
https://github.com/simple-crypto/SCALib
https://doi.org/10.5281/zenodo.7985686
https://nikoleta-v3.github.io
https://orcid.org/0000-0002-2943-3622
https://github.com/nicolaimueller
https://github.com/JannikZeitschner
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05196
https://doi.org/10.21105/joss.05196

The Journal of Open Source Software

of traces used in an evaluation can be very large, amounting to terabytes of data, hence
incremental single-pass algorithms (that avoid the need to store and/or load multiple times
the dataset) are highly desirable. Moreover, while the leakage samples are acquired at a fairly
low-resolution (8-bit to 16-bit integers), detection of very small effect sizes is needed, as they
can potentially be exploited to mount an attack. Besides this requirement, leakage traces
contain many points (typically thousands), and many metrics have to be computed for each
of these points, providing parallelization opportunities. As a result of these characteristics,
dedicated implementations can achieve much better accuracy and performance than generic or
naive (e.g., pure NumPy) ones.

On the other hand, security-specific algorithms are also used, such as key rank estimation
(which allows us to know the computational cost of the last part of a side-channel attack
without actually running it) (Poussier et al., 2016).

While multiple open-source side-channel attack and evaluation libraries exist, most of them
offer a very limited feature set and are unmaintained. The most comprehensive libraries are
lascar (Charles Guillemet & Servant, 2023) and SCAred (Guillaume Bethouart, 2023), which
offer implementations of some evaluation metrics and non-profiled attacks.

SCALib complements and improves over these libraries by providing better implementations
for the computation of two common evaluation metrics, by providing algorithms for profiled
side-channel attacks and including a key rank enumeration algorithm as a final evaluation step.
More precisely, for leakage metrics, we implement the Welch t-test and the computation of
the signal-to-noise ratio, and our implementations are significantly faster than the ones of
lascar and SCAred (Cassiers, 2023). Moreover, our t-test implementation includes so-called
higher-order and multivariate evaluations (Schneider & Moradi, 2015). Regarding profiled
attacks, SCAL1ib includes an implementation of LDA with a dimensionality reduction step (this
provides a regularization and improves classification performance) (Standaert & Archambeau,
2008). We also implement the soft analytical side-channel attack (SASCA), which is a variant
of the belief propagation algorithm (Veyrat-Charvillon et al., n.d.). Finally, our key-rank
estimation implementation relies on an efficient histogram-based algorithm (Poussier et al.,
2016).

SCALib has been used in many recent papers as a tool to validate new protected designs
(Nagpal et al., 2022), to publish new attacks on public implementations (Bronchain et al.,
2021), and also as a basis to develop new attack and evaluation methodologies (Bronchain &
Standaert, 2021).

Acknowledgments

This work has been funded in part by SGS, by the Belgian Fund for Scientific Research
(F.R.S.-FNRS) through the Equipment Project SCALAB, by the European Union (EU) and the
Walloon Region through the FEDER project USERMedia (convention number 501907-379156)
and by the European Union (EU) through the ERC project 724725 (acronym SWORD).

References

Bronchain, O., Cassiers, G., & Standaert, F.-X. (2021). Give me 5 minutes: Attacking ASCAD
with a single side-channel trace. IACR Cryptol. ePrint Arch., 817.

Bronchain, O., & Standaert, F.-X. (2021). Breaking masked implementations with many
shares on 32-bit software platforms or when the security order does not matter. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2021(3), 202-234. https://doi.org/10.46586/
tches.v2021.i3.202-234

Cassiers, & Bronchain. (2023). SCALib: A Side-Channel Analysis Library. Journal of Open Source Software, 8(86), 5196. https://doi.org/10. 2
21105/joss.05196.

https://doi.org/10.46586/tches.v2021.i3.202-234
https://doi.org/10.46586/tches.v2021.i3.202-234
https://doi.org/10.21105/joss.05196
https://doi.org/10.21105/joss.05196

The Journal of Open Source Software

Cassiers, G. (2023). SCABench: A benchmark suite for side-channel analysis libraries. In
GitHub repository. GitHub. https://github.com /cassiersg/SCABench

Chari, S., Rao, J. R., & Rohatgi, P. (2002). Template attacks. In B. S. K. Jr., Cetin
Kaya Kog, & C. Paar (Eds.), 4th International Workshop on Cryptographic Hardware and
Embedded Systems (CHES 2002), Revised Papers (Vol. 2523, pp. 13-28). Springer.
https://doi.org/10.1007/3-540-36400-5_3

Charles Guillemet, M. S. P., & Servant, V. (2023). LASCAR: Ledger's advanced side channel
analysis repository. In GitHub repository. GitHub. https://github.com/Ledger-Donjon/
lascar

Guillaume Bethouart, R. M., Rémi Huguet. (2023). SCAred. In GitLab repository. GitLab.
https://gitlab.com/eshard/scared

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., Rio, J. F. del, Wiebe, M., Peterson, P., .. Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357-362. https:
//doi.org/10.1038/s41586-020-2649-2

Nagpal, R., Gigerl, B., Primas, R., & Mangard, S. (2022). Riding the waves towards generic
single-cycle masking in hardware. /ACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(4),
693-717. https://doi.org/10.46586/tches.v2022.i4.693-717

Poussier, R., Standaert, F.-X., & Grosso, V. (2016). Simple key enumeration (and rank
estimation) using histograms: An integrated approach. In B. Gierlichs & A. Y. Poschmann
(Eds.), Proceedings of 18th International Conference on Cryptographic Hardware and
Embedded Systems - (CHES 2016) (Vol. 9813, pp. 61-81). Springer. https://doi.org/10.
1007/978-3-662-53140-2_4

Schneider, T., & Moradi, A. (2015). Leakage assessment methodology - A clear roadmap
for side-channel evaluations. In T. Giineysu & H. Handschuh (Eds.), Proceedings of 17th
International Workshop on Cryptographic Hardware and Embedded Systems (CHES 2015)
(Vol. 9293, pp. 495-513). Springer. https://doi.org/10.1007 /978-3-662-48324-4_25

Standaert, F.-X., & Archambeau, C. (2008). Using subspace-based template attacks to
compare and combine power and electromagnetic information leakages. In E. Oswald
& P. Rohatgi (Eds.), Proceedings of 10th International Workshop on Cryptographic
Hardware and Embedded Systems (CHES 2008) (Vol. 5154, pp. 411-425). Springer.
https://doi.org/10.1007 /978-3-540-85053-3_26

Standaert, F.-X., Malkin, T., & Yung, M. (2009). A unified framework for the analysis of
side-channel key recovery attacks. In A. Joux (Ed.), Advances in Cryptology - Proceedings
of 28th Annual International Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT 200:9) (Vol. 5479, pp. 443-461). Springer. https://doi.org/
10.1007/978-3-642-01001-9_26

Veyrat-Charvillon, N., Gérard, B., & Standaert, F.-X. (n.d.). Soft analytical side-channel
attacks. In P. Sarkar & T. Iwata (Eds.), Advances in Cryptology - Proceedings of 20th

International Conference on the Theory and Application of Cryptology and Information
Security (ASIACRYPT 2014), part i.

Cassiers, & Bronchain. (2023). SCALib: A Side-Channel Analysis Library. Journal of Open Source Software, 8(86), 5196. https://doi.org/10. 3

21105/joss.05196.

https://github.com/cassiersg/SCABench
https://doi.org/10.1007/3-540-36400-5_3
https://github.com/Ledger-Donjon/lascar
https://github.com/Ledger-Donjon/lascar
https://gitlab.com/eshard/scared
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.46586/tches.v2022.i4.693-717
https://doi.org/10.1007/978-3-662-53140-2_4
https://doi.org/10.1007/978-3-662-53140-2_4
https://doi.org/10.1007/978-3-662-48324-4_25
https://doi.org/10.1007/978-3-540-85053-3_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.21105/joss.05196
https://doi.org/10.21105/joss.05196

	Summary
	Statement of need
	Acknowledgments
	References

