The Journal of Open Source Software

SCALib: A Side-Channel Analysis Library

Gaétan Cassiers ® 2™ and Olivier Bronchain ®*
1 UCLouvain, Belgium 2 TU Graz, Austria § Corresponding author * These authors contributed equally.
DOI: 10.21105/joss.05196

Software

» Review & Summary
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Side-channel attacks exploit unintended leakage from an electronic device in order to retrieve
secret data. In particular, attacks exploiting physical side-channels such as power consumption
or electromagnetic radiations to recover cryptographic keys are an important threat to embedded
devices. Countermeasures against these attacks have been extensively researched for more
than two decades and are often deployed in security-critical devices.
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A side-channel attack is made of three steps. First, the leakage is measured. Then, a statistical
processing is applied to this leakage in order to infer the internal behavior of the device
(typically, an intermediate state of the cryptographic algorithm). Finally, the cryptographic key
Submitted: 16 February 2023 is recovered from the known behavior (Standaert et al., 2009).
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For the statistical processing, we distinguish between two classes of attacks, based on the use
License of a profiling dataset. Such a dataset consists of leakage measurements on a device running the
Authors of papers retain copyright  cryptographic algorithm with the known key. Profiled attacks use this data to fit a statistical
and release the work under a model (or train a machine-learning model) of the device, while non-profiled attacks have to
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There are two main approaches for evaluating the security of devices against side-channel
attacks. First, attack-based evaluations try to attack the device and report their success or
failure. In case of success, the main figure of merit is the number of traces (i.e., number of
executions of a cryptographic algorithm for which the leakage is measured). Second, detection-
based evaluations try to detect the presence of key-dependent leakage and sometimes quantify
it. These two types of methods can be complementary in the evaluation of a device.

Side-channel evaluations are used in various research contexts, such as analyzing the effective-
ness of a newly proposed countermeasure or analyzing a widely deployed device. In SCAL1ib,
we implement algorithms for commonly used metrics and methods in side-channel security
evaluations, attack-based and evaluation-based. We focus on the requirements of evaluations
and do not implement complete attacks when they are not needed to evaluate the security of
a device.

SCAL1b is distributed as a Python package and uses 16-bit integer NumPy (Harris et al., 2020)
arrays for leakage traces. For the sake of efficiency, most algorithms are implemented in Rust,
allowing fine control of the memory accesses and enabling efficient parallelization.

Statement of need

Many of the algorithms used in side-channel security evaluations are well-known statistical
techniques. For instance, the widely used TVLA methodology is based on the Welch t-test
for the difference of means (Schneider & Moradi, 2015). Also, when modeling the leakage,
techniques such as Linear Discriminant Analysis (LDA) (Standaert & Archambeau, 2008)
can be used. While implementations of these algorithms are fairly easy to find, our use-case
has a few particularities that motivate dedicated implementations. For example, the number
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of traces used in an evaluation can be very large, amounting to terabytes of data, hence
incremental single-pass algorithms (that avoid the need to store and/or load multiple times
the dataset) are highly desirable. Moreover, while the leakage samples are acquired at a fairly
low-resolution (8-bit to 16-bit integers), detection of very small effect sizes is needed, as they
can potentially be exploited to mount an attack. Besides this requirement, leakage traces
contain many points (typically thousands), and many metrics have to be computed for each
of these points, providing parallelization opportunities. As a result of these characteristics,
dedicated implementations can achieve much better accuracy and performance than generic or
naive (e.g., pure NumPy) ones.

On the other hand, security-specific algorithms are also used, such as key rank estimation
(which allows us to know the computational cost of the last part of a side-channel attack
without actually running it) (Poussier et al., 2016).

While multiple open-source side-channel attack and evaluation libraries exist, most of them
offer a very limited feature set and are unmaintained. The most comprehensive libraries are
lascar (Charles Guillemet & Servant, 2023) and SCAred (Guillaume Bethouart, 2023), which
offer implementations of some evaluation metrics and non-profiled attacks.

SCALib complements and improves over these libraries by providing better implementations
for the computation of two common evaluation metrics, by providing algorithms for profiled
side-channel attacks and including a key rank enumeration algorithm as a final evaluation step.
More precisely, for leakage metrics, we implement the Welch t-test and the computation of
the signal-to-noise ratio, and our implementations are significantly faster than the ones of
lascar and SCAred (Cassiers, 2023). Moreover, our t-test implementation includes so-called
higher-order and multivariate evaluations (Schneider & Moradi, 2015). Regarding profiled
attacks, SCAL1ib includes an implementation of LDA with a dimensionality reduction step (this
provides a regularization and improves classification performance) (Standaert & Archambeau,
2008). We also implement the soft analytical side-channel attack (SASCA), which is a variant
of the belief propagation algorithm (Veyrat-Charvillon et al., n.d.). Finally, our key-rank
estimation implementation relies on an efficient histogram-based algorithm (Poussier et al.,
2016).

SCALib has been used in many recent papers as a tool to validate new protected designs
(Nagpal et al., 2022), to publish new attacks on public implementations (Bronchain et al.,
2021), and also as a basis to develop new attack and evaluation methodologies (Bronchain &
Standaert, 2021).
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