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Summary
Time series from e.g. electronic health records often have a large number of variables that
are sampled at irregular and differing intervals. Before this type of data can be used for
prediction modelling with machine learning methods such as logistic regression or XGBoost
(Chen & Guestrin, 2016), the data needs to be reshaped. In essence, the time series need to
be flattened so that each prediction time is represented by a vector of predefined length. This
vector should hold the set of predictor values and an outcome value. These predictor values
can be constructed by aggregating the preceding values in the time series within a certain
time window. This process of flattening the data lays the foundation for further analyses and
requires handling a number of tasks such as 1) how to deal with missing values, 2) which value
to use if none fall within the prediction window, 3) how to handle variables measured multiple
times within the chosen time window, and 4) how to handle predictors that attempt to look
further back than the start of the dataset.

timeseriesflattener aims to simplify this process by providing an easy-to-use and fully-
specified pipeline for flattening complex time series. timeseriesflattener implements all the
functionality required for aggregating features in specific time windows, grouped by e.g. patient
IDs, in a computationally efficient manner. The package is currently used for feature extraction
from electronic health records in studies based on the Psychiatric Clinical Outcome Prediction
Cohort (PSYCOP) projects (Hansen et al., 2021).

Statement of need
The recent surge in machine learning capabilities has led to large efforts in using information
from electronic health records and other medical time series for prediction modelling (Rajkomar
et al., 2018; Shamout et al., 2021). These efforts have spawned important developments
related to prediction modelling of clinical data such as AutoPrognosis2.0 (Imrie et al., 2022)
and general-purpose autoML frameworks such as auto-sklearn (Feurer et al., 2015). However,
modelling and machine learning tends to take the spotlight, with often insufficient attention
being paid to data preparation and problem framing. For example, some earlier papers have
generated predictions at a specific time interval before each outcome. However, this makes
the problem artificially easy, and the model will not generalise to the real world (Lauritsen et
al., 2021).

To the best of our knowledge, FIDDLE (Tang et al., 2020) is the only software package that
has attempted to solve the problem of flattening irregular time series. However, FIDDLE was
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developed primarily for use on time series from intensive care units (such as the MIMIC-III
dataset (Johnson et al., 2016)). For instance, FIDDLE requires prediction times to be regularly
and evenly spaced for all patients. This constraint means that it is not possible to make
predictions at e.g. every physical visit to a clinic, or at another non-regularly-timed clinically
relevant point in time.

The goal of timeseriesflattener is to streamline the process of problem definition and
preparing data for modelling while keeping important decisions, such as how far back to
aggregate features, which method to use for aggregation, how to handle missing values, etc.,
highly explicit. Specifically, it allows the transformation of complex datasets so classical
machine learning models can handle them, which can dramatically decrease the time from
an idea to a proof of concept. Further, timeseriesflattener enforces best practices for
prognostic modelling, such as defining when to generate predictions independently of the
timing of outcomes (Lauritsen et al., 2021). By providing a fast and reliable framework,
timeseriesflattener aims to accelerate the development of high-quality clinical prediction
models in both research and production environments.

Features & Functionality
timeseriesflattener is a Python package (3.8 | 3.9 | 3.10 | 3.11), and includes features
required for converting any number of (irregular) time series into a single dataframe with a
row for each desired prediction time and columns for each constructed feature. Raw values
are aggregated by an ID column, which allows for e.g. aggregating values for each patient
independently.

When constructing feature sets from time series in general, or time series from electronic health
records in particular, there are several important choices to make:

When to issue predictions (prediction time). E.g. at every physical visit, every morning, every
year or another (clinically) meaningful time/interval. How far back/ahead from the prediction
times to look for raw values (lookbehind/lookahead). Which method to use for aggregation if
multiple values exist in the lookbehind. Which value to use if there are no data points in the
lookbehind.
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Figure 1: timeseriesflattener terminology and functionality. A: Lookbehind determines how far back
in time to look for values for predictors, whereas lookahead determines how far into the future to look
for outcome values. A prediction time indicates at which point the model issues a prediction, and is
used as a reference for the lookbehind and lookahead. B: Labels for prediction times are negatives if
the outcome does not occur in the lookahead window. Labels are only positives if the outcome occurs
inside the lookahead window. C) Values within the lookbehind window are aggregated using a specified
function, for example the mean as shown in this example, or max/min etc. D) Prediction times are
dropped if the lookbehind extends further back in time than the start of the dataset or if the lookahead
extends further than the end of the dataset. This behaviour is optional.

Figure 1 shows an example of the terminology and the calculation of predictor- and outcome-
values for two prediction times. Multiple lookbehind windows and aggregation functions can
be specified for each feature to obtain a rich representation of the data.

Table 1 shows a minimal example of input values, and Table 2 shows a flattened version
with a prediction time at 2020-06-05 with two lookbehind windows (3 months and 6 months)
and using max as the aggregation function. timeseriesflattener creates informative column
names for easy inspection and interpretability in subsequent modelling.

Table 1: Minimal example of input values

datetime {value} id
2020-01-01 5 1
2020-05-01 2 1
2020-06-01 1 1
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Table 2: Flattened version of Table 1

datetime id pred_max_{value}_within_3_months pred_max_{value}_within_6_months
2020-06-05 1 2 5

Besides the core functionality, the package implements custom caching for quick experimenta-
tion and generation of new datasets. The caching mechanisms can easily be overwritten if
another caching service (e.g. Redis or SQLite) is desired, rather than the default of writing to
disk.

The documentation and tutorials contain thorough usage examples and continuously updated
information on the API.

Target Audience
The package is aimed at researchers and individuals working with irregular time series such
as electronic health records or sensor data from e.g. glucose monitoring or Internet of Things
devices.
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