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Summary
The germline mutation process drives genetic variation and provides the raw material for
adaptive evolution. Germline mutations arise from spontaneous DNA damage caused by
environmental mutagens, or errors in DNA replication. Populations and species may experience
distinct mutational histories due to variation in environmental exposure, life history, and
heritable variation in the machinery controlling DNA replication fidelity.

Mutational mechanisms often have mutation signatures in terms of the nucleotide sequence
contexts where they act. Population genomics has given increasing attention to nucleotide
sequence context in the study of the germline mutation process (reviewed in Carlson et al.
(2020)). Single-nucleotide polymorphisms (SNPs) can be assigned to mutation types by the
ancestral and derived nucleotide states and a window of local nucleotide context in the ancestral
background. The mutation spectrum of an individual or population is the relative distribution
of these mutation types.

Inter- and intra-specific germline mutation spectrum variation has revealed a dynamic and
evolving germline mutation process shaping modern genomic diversity. Parsing mutation
spectra temporally (via allele frequency) and spatially (via genomic annotations) has revealed
the history and present of mutational processes, and applying such analysis to de novo mutation
data may be clinically informative for rare or undiagnosed genetic diseases.

Here we describe mutyper, a command-line utility and Python package that assigns ancestrally
polarized mutation types to SNP data, computes mutation spectra for individuals and popula-
tions, and computes sample frequency spectra stratified by mutation type for population genetic
inference. Documentation is provided at https://harrispopgen.github.io/mutyper; source code
is available at https://github.com/harrispopgen/mutyper.

Statement of need
Despite many exciting findings in this growing area, there is a lack of software for germline
mutation type annotation and spectrum generation from population-scale genomic data. We
developed mutyper, an open-source command-line utility and Python package, to address the
field’s need for efficient and well-tested software for both larger bioinformatics pipelines and
exploratory analysis.
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The literature on cancer somatic mutation signatures includes several software tools for
clustering and dimensionality reduction that are either not scalable or not flexible enough for
general population-scale germline variation data (Gehring et al., 2015; Goncearenco et al., 2017;
Lee et al., 2018; S. Li et al., 2020; Manders et al., 2022; Rosales et al., 2017; Rosenthal et al.,
2016), but the package helmsman (Carlson et al., 2018) enables partial interoperability with
some of these tools. Complementing this work, mutyper is a flexible, efficient, and extensible
software package for low-level bioinformatic workflows in germline mutation spectrum studies.

Implementation

CLI
The core functionality of the mutyper command-line interface (CLI) is to augment SNP data
(input or piped in VCF/BCF format) with ancestral mutation type annotations and stream to
stdout. Fast and memory-efficient processing of VCF input (Danecek et al., 2011) is achieved
with cyvcf2 (Pedersen & Quinlan, 2017), and mutation types are assigned via the INFO field
for each variant via a key-value pair such as mutation_type=GAG>GTG. Reference and alternative
alleles are polarized to the ancestral and derived states, respectively, and genotype counts are
updated accordingly. The mutyper CLI is fully compatible with standard CLIs (i.e. bcftools
(H. Li, 2011)) for filtering SNPs or samples, masking regions, and merging/concatenating
VCFs.

To polarize ancestral and derived allelic states, and define ancestral 𝑘-mer backgrounds, an
ancestral genome in FASTA format is required. Mutyper uses the package pyfaidx (Shirley
et al., 2015) for fast random access to ancestral genomic content, with minimal memory
requirements. Ancestral genomes can be specified by various means. The ancestral FASTA
sequence provided by the 1000 Genomes Project (1000 Genomes Project Consortium et al.,
2015) was estimated from a multi-species alignment using ortheus (Paten et al., 2008). In
such a case, the ancestral FASTA can be passed to mutyper directly. Alternatively, mutyper
can estimate ancestral states by polarizing SNPs using an outgroup genome aligned to the
reference (e.g. the chimp genome liftover to the human reference genome).

The user may specify the 𝑘-mer context size desired (e.g. 𝑘 = 3 for triplet mutation types). As in
previous work, mutation type annotations are, by default, collapsed by reverse complementation
such that the ancestral state is either A or C. Alternatively, a BED file can be supplied to
define the strand orientation for nucleotide context at each site (e.g. according to direction of
replication or transcription).

In addition to this core functionality, the CLI includes several other subcommands that
summarize mutation-type-annotated SNP data piped from the core command described above.
Individual- and population-level mutation spectra and sample frequency spectra are streamed
to stdout in tab-separated form, and can be used to characterize modern mutation spectrum
variation, and infer its evolutionary history.

Python API
The mutyper Python API exposes the functions above in an interactive notebook session to
implement custom analyses of mutation type data by interfacing with the strong ecosystem
of scientific computing packages available in Python. For example, dimensionality reduction
(such as principal components analysis or non-negative matrix factorization) is often used to
summarize mutation spectra, and the scikit-learn package (Pedregosa et al., 2011) can
be used in conjunction with the mutyper API for this purpose. The mutyper API produces
mutation spectra or sample frequency spectrum matrices as pandas data frames (McKinney,
2010), which can be easily manipulated, visualized, and analyzed with standard python scientific
computing packages.
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Applications
mutyper was first used by DeWitt et al. (2021) alongside the Python package mushi to infer
mutation rate histories from mutation spectra using coalescent theory. Sasani et al. (2022)
used mutyper in work reporting the discovery of a mutator allele in a unique mouse model
system. Vollger et al. (2022) used mutyper to analyze long-read sequencing data from humans,
finding elevated mutation rates and distinct mutation spectra in segmentally duplicated regions.
As of this writing, mutyper is being used in several ongoing studies in multiple labs.
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